Cargando…
Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
A simple and highly-efficient approach to monitor the expression of P-glycoprotein (P-gp) in cells was urgently needed to demonstrate the drug resistance of cancer cells. Herein, a competitive method-based electrochemiluminescent (ECL) assay with a single ECL indicator was proposed for the first tim...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355943/ https://www.ncbi.nlm.nih.gov/pubmed/28451145 http://dx.doi.org/10.1039/c6sc02801b |
_version_ | 1782515703272701952 |
---|---|
author | Liang, Wen-Bin Yang, Ming-Zhen Zhuo, Ying Zheng, Ying-Ning Xiong, Cheng-Yi Chai, Ya-Qin Yuan, Ruo |
author_facet | Liang, Wen-Bin Yang, Ming-Zhen Zhuo, Ying Zheng, Ying-Ning Xiong, Cheng-Yi Chai, Ya-Qin Yuan, Ruo |
author_sort | Liang, Wen-Bin |
collection | PubMed |
description | A simple and highly-efficient approach to monitor the expression of P-glycoprotein (P-gp) in cells was urgently needed to demonstrate the drug resistance of cancer cells. Herein, a competitive method-based electrochemiluminescent (ECL) assay with a single ECL indicator was proposed for the first time to efficiently estimate the concentration ratio of two proteins. By converting the different proteins to partially coincident nucleotide sequences via a sandwich type immunoassay on magnetic beads, the concentration ratio related ECL signals could be obtained via competitive nucleotide hybridization on an electrode surface. This method could thoroughly overcome the limitations of simultaneous ECL assays via multiple ECL indicators with inevitable cross reactions. At the same time, rolling circle amplification was employed to improve the detection performances, especially the detection limit and sensitivity. With P-gp and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a model, the proposed ECL assay was successfully employed to monitor the drug resistance of cancer cells. Compared with conventional technologies, improved sensitivity and accuracy were achieved with a correlation coefficient of 0.9928 and a detection limit of 0.52%. Success in the establishment of the competitive method-based ECL assay offered an efficient strategy to demonstrate the concentration ratio of two proteins and a potential approach for detecting other proteins and nucleotide sequences, revealing a new avenue for ultrasensitive biomolecule diagnostics, especially in cell function research. |
format | Online Article Text |
id | pubmed-5355943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-53559432017-04-27 Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells Liang, Wen-Bin Yang, Ming-Zhen Zhuo, Ying Zheng, Ying-Ning Xiong, Cheng-Yi Chai, Ya-Qin Yuan, Ruo Chem Sci Chemistry A simple and highly-efficient approach to monitor the expression of P-glycoprotein (P-gp) in cells was urgently needed to demonstrate the drug resistance of cancer cells. Herein, a competitive method-based electrochemiluminescent (ECL) assay with a single ECL indicator was proposed for the first time to efficiently estimate the concentration ratio of two proteins. By converting the different proteins to partially coincident nucleotide sequences via a sandwich type immunoassay on magnetic beads, the concentration ratio related ECL signals could be obtained via competitive nucleotide hybridization on an electrode surface. This method could thoroughly overcome the limitations of simultaneous ECL assays via multiple ECL indicators with inevitable cross reactions. At the same time, rolling circle amplification was employed to improve the detection performances, especially the detection limit and sensitivity. With P-gp and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a model, the proposed ECL assay was successfully employed to monitor the drug resistance of cancer cells. Compared with conventional technologies, improved sensitivity and accuracy were achieved with a correlation coefficient of 0.9928 and a detection limit of 0.52%. Success in the establishment of the competitive method-based ECL assay offered an efficient strategy to demonstrate the concentration ratio of two proteins and a potential approach for detecting other proteins and nucleotide sequences, revealing a new avenue for ultrasensitive biomolecule diagnostics, especially in cell function research. Royal Society of Chemistry 2016-12-01 2016-08-04 /pmc/articles/PMC5355943/ /pubmed/28451145 http://dx.doi.org/10.1039/c6sc02801b Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Liang, Wen-Bin Yang, Ming-Zhen Zhuo, Ying Zheng, Ying-Ning Xiong, Cheng-Yi Chai, Ya-Qin Yuan, Ruo Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells |
title | Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
|
title_full | Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
|
title_fullStr | Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
|
title_full_unstemmed | Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
|
title_short | Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells
|
title_sort | competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355943/ https://www.ncbi.nlm.nih.gov/pubmed/28451145 http://dx.doi.org/10.1039/c6sc02801b |
work_keys_str_mv | AT liangwenbin competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT yangmingzhen competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT zhuoying competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT zhengyingning competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT xiongchengyi competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT chaiyaqin competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells AT yuanruo competitivemethodbasedelectrochemiluminescentassaywithproteinnucleotideconversionforratiodetectiontoefficientlymonitorthedrugresistanceofcancercells |