Cargando…

Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13(T)

BACKGROUND: β-Glucosidase is claimed as a key enzyme in cellulose hydrolysis. The cellulosic fibers are usually entrapped with hemicelluloses containing xylose. So there is ongoing interest in searching for glucose- and xylose-stimulated β-glucosidases to increase the efficiency of hydrolysis of cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yang, Li, Rui, Wang, Jing, Zhang, Xiaohan, Jia, Rong, Gao, Yi, Peng, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356265/
https://www.ncbi.nlm.nih.gov/pubmed/28302049
http://dx.doi.org/10.1186/s12858-017-0079-z
Descripción
Sumario:BACKGROUND: β-Glucosidase is claimed as a key enzyme in cellulose hydrolysis. The cellulosic fibers are usually entrapped with hemicelluloses containing xylose. So there is ongoing interest in searching for glucose- and xylose-stimulated β-glucosidases to increase the efficiency of hydrolysis of cellulosic biomass. RESULTS: A thermostable β-glucosidase gene (Bglp) was cloned from Anoxybacillus flavithermus subsp. yunnanensis E13(T) and characterized. Optimal enzyme activity was observed at 60 °C and pH 7.0. Bglp was relatively stable at 60 °C with a 10-h half-life. The kinetic parameters V (max) and K (m) for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 771 ± 39 μmol/min/mg and 0.29 ± 0.01 mM, respectively. The activity of Bglp is dramatically stimulated by glucose or xylose at concentrations up to 1.4 M. After Bglp was added to Celluclast® 1.5 L, the conversion of sugarcane bagasse was 48.4 ± 0.8%, which was much higher than of Celluclast® 1.5 L alone. Furthermore, Bglp showed obvious advantages in the hydrolysis when initial concentrations of glucose and xylose are high. CONCLUSIONS: The supplementation of BglP significantly enhanced the glucose yield from sugarcane bagasse, especially in the presence of high concentrations of glucose or xylose. Bglp should be a promising candidate for industrial applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12858-017-0079-z) contains supplementary material, which is available to authorized users.