Cargando…
Standardizing effect size from linear regression models with log-transformed variables for meta-analysis
BACKGROUND: Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all...
Autores principales: | Rodríguez-Barranco, Miguel, Tobías, Aurelio, Redondo, Daniel, Molina-Portillo, Elena, Sánchez, María José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356327/ https://www.ncbi.nlm.nih.gov/pubmed/28302052 http://dx.doi.org/10.1186/s12874-017-0322-8 |
Ejemplares similares
-
Erratum to: Standardizing effect size from linear regression models with log-transformed variables for meta-analysis
por: Rodríguez-Barranco, Miguel, et al.
Publicado: (2017) -
The Allometry of Coarse Root Biomass: Log-Transformed Linear Regression or Nonlinear Regression?
por: Lai, Jiangshan, et al.
Publicado: (2013) -
Log-linear models and logistic regression
por: Christensen, Ronald, 1951-
Publicado: (1997) -
Log-linear models and logistic regression
por: Christensen, Ronald
Publicado: (1997) -
Log-linear models
por: Christensen, Ronald
Publicado: (1990)