Cargando…
Generating highly accurate prediction hypotheses through collaborative ensemble learning
Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since...
Autores principales: | Arsov, Nino, Pavlovski, Martin, Basnarkov, Lasko, Kocarev, Ljupco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356335/ https://www.ncbi.nlm.nih.gov/pubmed/28304378 http://dx.doi.org/10.1038/srep44649 |
Ejemplares similares
-
Non-Markovian SIR epidemic spreading model of COVID-19
por: Basnarkov, Lasko, et al.
Publicado: (2022) -
Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing
por: Stojkoski, Viktor, et al.
Publicado: (2020) -
Random Walks on Networks with Centrality-Based Stochastic Resetting
por: Zelenkovski, Kiril, et al.
Publicado: (2023) -
SEAIR Epidemic spreading model of COVID-19
por: Basnarkov, Lasko
Publicado: (2021) -
Consensus and Synchronization in Complex Networks
por: Kocarev, Ljupco
Publicado: (2013)