Cargando…
Steric ploy for alternating donor–acceptor co-assembly and cooperative supramolecular polymerization
The presence of a bulky peripheral wedge destabilizes the homo-assembly of an amide functionalized acceptor (A) monomer and thereby enables the formation of an alternating supramolecular copolymer with an amide appended donor (D) monomer via the synergistic effect of H-bonding and the charge-transfe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356505/ https://www.ncbi.nlm.nih.gov/pubmed/28451242 http://dx.doi.org/10.1039/c6sc02640k |
Sumario: | The presence of a bulky peripheral wedge destabilizes the homo-assembly of an amide functionalized acceptor (A) monomer and thereby enables the formation of an alternating supramolecular copolymer with an amide appended donor (D) monomer via the synergistic effect of H-bonding and the charge-transfer (CT) interaction with a remarkably high K (a) of 31 000 M(–1). In sharp contrast, H-bonding driven homo-polymers of A and D are formed by just replacing the bulky chains of the A monomer with linear hydrocarbons. By taking advantage of the clear difference in the critical temperature for the onset of the AA or DD homo-assemblies and DA co-assembly (T (DA) ≫ T (AA) or T (DD)), the supramolecular polymerization pathway of the NDI-monomer could be fully diverted from isodesmic to cooperative in the presence of a small amount of DAN which helped the in situ production of nucleating sites involving the D–A CT-complex at a relatively higher temperature and the subsequent chain growth at T (AA) following the nucleation-elongation model. |
---|