Cargando…

Upregulation of long noncoding RNA HOTTIP promotes metastasis of esophageal squamous cell carcinoma via induction of EMT

Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in Eastern Asia. The prognosis of ESCC remains poor; thus, it is still necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recent studies show that l...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xuemei, Han, Hongyu, Li, Yuqi, Zhang, Qiongxia, Mo, Kailan, Chen, Size
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356674/
https://www.ncbi.nlm.nih.gov/pubmed/27806322
http://dx.doi.org/10.18632/oncotarget.12995
Descripción
Sumario:Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in Eastern Asia. The prognosis of ESCC remains poor; thus, it is still necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recent studies show that lncRNAs involve in the initiation and progression of various cancers including ESCC. HOTTIP has been recently revealed as oncogenic regulator in different cancers, however, whether HOTTIP is involved in ESCC remains poorly understood. To investigate the role of HOTTIP in ESCC, we evaluated the HOTTIP expression levels in a series of ESCC tissues and a panel of ESCC cell line using qRT-PCR. Moreover, we investigated the effect of HOTTIP on cell proliferation, migration and invasion of ESCC cells. Here, we reported that HOTTIP was upregulated in ESCC. Further experiments revealed that HOTTIP knockdown significantly inhibited ESCC cells proliferation by causing G1 arrest. Furthermore, inhibitory effects of HOTTIP on cell migration and invasion were partly associated with EMT process. In conclusion, these data suggest that HOTTIP could be an oncogene for ESCC, and may be served as a candidate target for new therapies in human ESCC.