Cargando…

ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition

The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ Wnt, and Notch signaling pathways and small regulatory RNA species called mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Stacy, Andrew J., Craig, Michael P., Sakaram, Suraj, Kadakia, Madhavi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356785/
https://www.ncbi.nlm.nih.gov/pubmed/27924063
http://dx.doi.org/10.18632/oncotarget.13797
Descripción
Sumario:The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ?Np63a, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ?Np63a is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ?Np63a as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer.