Cargando…
The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling
We and others have shown that the Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), a member of the inflammatory network exerting pleiotropic effects in the bone marrow (BM) microenvironment, regulates the survival and proliferation of different cell types, including normal hematopoietic progenitor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356797/ https://www.ncbi.nlm.nih.gov/pubmed/27903985 http://dx.doi.org/10.18632/oncotarget.13664 |
Sumario: | We and others have shown that the Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), a member of the inflammatory network exerting pleiotropic effects in the bone marrow (BM) microenvironment, regulates the survival and proliferation of different cell types, including normal hematopoietic progenitor cells. Moreover, TIMP-1 has been shown to be involved in cancer progression. However, its role in leukemic microenvironment has not been addressed. Here, we investigated the activity of TIMP-1 on Acute Myelogenous Leukemia (AML) cell functions. First, we found that TIMP-1 levels were increased in the BM plasma of AML patients at diagnosis. In vitro, recombinant human (rh)TIMP-1 promoted the survival and cell cycle S-phase entry of AML cells. These kinetic effects were related to the downregulation of cyclin-dependent kinase inhibitor p21. rhTIMP-1 increases CXCL12-driven migration of leukemic cells through PI3K signaling. Interestingly, activation of CD63 receptor was required for TIMP-1's cytokine/chemokine activity. Of note, rhTIMP-1 stimulation modulated mRNA expression of Hypoxia Inducible Factor (HIF)-1α, downstream of PI3K/Akt activation. We then co-cultured AML cells with normal or leukemic mesenchymal stromal cells (MSCs) to investigate the interaction of TIMP-1 with cellular component(s) of BM microenvironment. Our results showed that the proliferation and migration of leukemic cells were greatly enhanced by rhTIMP-1 in presence of AML-MSCs as compared to normal MSCs. Thus, we demonstrated that TIMP-1 modulates leukemic blasts survival, migration and function via CD63/PI3K/Akt/p21 signaling. As a “bad actor” in a “bad soil”, we propose TIMP-1 as a potential novel therapeutic target in leukemic BM microenvironment. |
---|