Cargando…
MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein
Osteosarcoma (OS) is the most common primary bone tumor, occurring frequently in adolescents and possessing a high malignant severity. MicroRNAs play critical roles during OS development. Thus, elucidation of the involvement of specific microRNAs in the development of OS may provide novel therapeuti...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356804/ https://www.ncbi.nlm.nih.gov/pubmed/27911265 http://dx.doi.org/10.18632/oncotarget.13672 |
_version_ | 1782515920341565440 |
---|---|
author | Zhang, Heng Guo, Xiaofeng Feng, Xing Wang, Tingting Hu, Zhaohua Que, Xiangyong Tian, Qingsong Zhu, Tianbo Guo, Guixian Huang, Wei Li, Xinzhi |
author_facet | Zhang, Heng Guo, Xiaofeng Feng, Xing Wang, Tingting Hu, Zhaohua Que, Xiangyong Tian, Qingsong Zhu, Tianbo Guo, Guixian Huang, Wei Li, Xinzhi |
author_sort | Zhang, Heng |
collection | PubMed |
description | Osteosarcoma (OS) is the most common primary bone tumor, occurring frequently in adolescents and possessing a high malignant severity. MicroRNAs play critical roles during OS development. Thus, elucidation of the involvement of specific microRNAs in the development of OS may provide novel therapeutic targets for OS treatment. Here, we showed that in the OS specimens from patients, the levels of miR-543 were significantly increased whereas the levels of PRMT9 were significantly decreased, compared to the paired normal bone tissue. Moreover, miR-543 and PRMT9 inversely correlated in the OS cell lines. Bioinformatics analyses predicted that miR-543 may target the 3'-UTR of PRMT9 mRNA to inhibit its translation, which was confirmed by luciferase-reporter assay. MiR-543 promoted OS cell proliferation in vitro and in vivo. Mechanistically, miR-543 inhibited PRMT9-enhanced cell oxidative phosphorylation, while miR-543 depletion promoted PRMT9-increased HIF-1α instability and inhibited glycolysis in OS cells. Clinically, miR-543 expression was negatively correlated with PRMT9 expression in OS tissues. Together, our data provide important evidence for glycolysis in OS development, and suggest that targeting glycolytic pathway through miR-543/PRMT9/HIF-1α axis may represent a potential therapeutic strategy to eradicate OS cells. |
format | Online Article Text |
id | pubmed-5356804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53568042017-04-20 MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein Zhang, Heng Guo, Xiaofeng Feng, Xing Wang, Tingting Hu, Zhaohua Que, Xiangyong Tian, Qingsong Zhu, Tianbo Guo, Guixian Huang, Wei Li, Xinzhi Oncotarget Research Paper Osteosarcoma (OS) is the most common primary bone tumor, occurring frequently in adolescents and possessing a high malignant severity. MicroRNAs play critical roles during OS development. Thus, elucidation of the involvement of specific microRNAs in the development of OS may provide novel therapeutic targets for OS treatment. Here, we showed that in the OS specimens from patients, the levels of miR-543 were significantly increased whereas the levels of PRMT9 were significantly decreased, compared to the paired normal bone tissue. Moreover, miR-543 and PRMT9 inversely correlated in the OS cell lines. Bioinformatics analyses predicted that miR-543 may target the 3'-UTR of PRMT9 mRNA to inhibit its translation, which was confirmed by luciferase-reporter assay. MiR-543 promoted OS cell proliferation in vitro and in vivo. Mechanistically, miR-543 inhibited PRMT9-enhanced cell oxidative phosphorylation, while miR-543 depletion promoted PRMT9-increased HIF-1α instability and inhibited glycolysis in OS cells. Clinically, miR-543 expression was negatively correlated with PRMT9 expression in OS tissues. Together, our data provide important evidence for glycolysis in OS development, and suggest that targeting glycolytic pathway through miR-543/PRMT9/HIF-1α axis may represent a potential therapeutic strategy to eradicate OS cells. Impact Journals LLC 2016-11-28 /pmc/articles/PMC5356804/ /pubmed/27911265 http://dx.doi.org/10.18632/oncotarget.13672 Text en Copyright: © 2017 Zhang et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Zhang, Heng Guo, Xiaofeng Feng, Xing Wang, Tingting Hu, Zhaohua Que, Xiangyong Tian, Qingsong Zhu, Tianbo Guo, Guixian Huang, Wei Li, Xinzhi MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title | MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title_full | MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title_fullStr | MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title_full_unstemmed | MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title_short | MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein |
title_sort | mirna-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing prmt9 and stabilizing hif-1α protein |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356804/ https://www.ncbi.nlm.nih.gov/pubmed/27911265 http://dx.doi.org/10.18632/oncotarget.13672 |
work_keys_str_mv | AT zhangheng mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT guoxiaofeng mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT fengxing mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT wangtingting mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT huzhaohua mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT quexiangyong mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT tianqingsong mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT zhutianbo mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT guoguixian mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT huangwei mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein AT lixinzhi mirna543promotesosteosarcomacellproliferationandglycolysisbypartiallysuppressingprmt9andstabilizinghif1aprotein |