Cargando…
A multi-step classifier addressing cohort heterogeneity improves performance of prognostic biomarkers in three cancer types
Cancer research continues to highlight the extensive genetic diversity that exists both between and within tumors. This intrinsic heterogeneity poses one of the central challenges to predicting patient clinical outcome and the personalization of treatments. Despite progress in some individual tumor...
Autores principales: | Patrick, Ellis, Schramm, Sarah-Jane, Ormerod, John T, Scolyer, Richard A, Mann, Graham J, Mueller, Samuel, Yang, Jean Y.H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356843/ https://www.ncbi.nlm.nih.gov/pubmed/27833072 http://dx.doi.org/10.18632/oncotarget.13203 |
Ejemplares similares
-
Identification of new prognostic biomarkers for Stage III metastatic melanoma patients
por: Kakavand, Hojabr, et al.
Publicado: (2013) -
Differential distribution improves gene selection stability and has competitive classification performance for patient survival
por: Strbenac, Dario, et al.
Publicado: (2016) -
Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers
por: Dakna, Mohammed, et al.
Publicado: (2010) -
Addressing cellular heterogeneity in tumor and circulation for refined prognostication
por: Lim, Su Bin, et al.
Publicado: (2019) -
Network-based biomarkers enhance classical approaches to prognostic gene expression signatures
por: Barter, Rebecca L, et al.
Publicado: (2014)