Cargando…

Low-profile Visualized Intraluminal Support Junior Device for the Treatment of Intracranial Aneurysms

Objective: Early case series suggest that the recently introduced Low-profile Visualized Intraluminal Support Junior (LVIS Jr.) device (MicroVention-Terumo, Inc., Tustin, CA) may be used to treat wide-necked aneurysms that would otherwise require treatment with intrasaccular devices or open surgery....

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Mihir, Cheung, Vincent J, Abraham, Peter, Wali, Arvin R, Santiago-Dieppa, David R, Gabel, Brandon C, Almansouri, Abdulrahman, Pannell, J. Scott, Khalessi, Alexander A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356986/
https://www.ncbi.nlm.nih.gov/pubmed/28357169
http://dx.doi.org/10.7759/cureus.1037
Descripción
Sumario:Objective: Early case series suggest that the recently introduced Low-profile Visualized Intraluminal Support Junior (LVIS Jr.) device (MicroVention-Terumo, Inc., Tustin, CA) may be used to treat wide-necked aneurysms that would otherwise require treatment with intrasaccular devices or open surgery. We report our single-center experience utilizing LVIS Jr. to treat intracranial aneurysms involving 1.8-2.5 mm parent arteries. Methods: We retrospectively reviewed records of patients treated with the LVIS Jr. device for intracranial aneurysms at a single center. A total of 21 aneurysms were treated in 18 patients. Aneurysms were 2-25 mm in diameter; one was ruptured, while three had recurred after previous rupture and treatment. Lesions were distributed across the anterior (n=12) and posterior (n=9) circulations. Three were fusiform morphology. Results: Stent deployment was successful in 100% of cases with no immediate complications. Seventeen aneurysms were treated with stent-assisted coil embolization resulting in immediate complete occlusion in 94% of cases. Two fusiform aneurysms arising from the posterior circulation were further treated with elective clip ligation after delayed expansion and recurrence; no lesions required further endovascular treatment. Four aneurysms were treated by flow diversion with stand-alone LVIS Jr. stent, and complete occlusion was achieved in three cases. Small foci of delayed ischemic injury were noted in two patients in the setting of antiplatelet medication noncompliance. No in-stent stenosis, migration, hemorrhage, or permanent deficits were observed. Good functional outcome based on the modified Rankin Scale score (mRS ≤ 2) was achieved in 100% of cases. Conclusion: Our midterm results suggest that the LVIS Jr. stent may be used for a variety of intracranial aneurysms involving small parent arteries (1.8-2.5 mm) with complete angiographic occlusion, parent vessel preservation, and functional clinical outcomes. This off-label expansion would increase the number of aneurysms amenable to endovascular treatment. Future studies may build upon our experiences with flow diversion and treatment of complex or multiple lesions.