Cargando…
Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders
Sirtuins (SIRT1–SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD(+) levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357501/ https://www.ncbi.nlm.nih.gov/pubmed/27882448 http://dx.doi.org/10.1007/s11064-016-2110-y |
_version_ | 1782516048405200896 |
---|---|
author | Jęśko, Henryk Wencel, Przemysław Strosznajder, Robert P. Strosznajder, Joanna B. |
author_facet | Jęśko, Henryk Wencel, Przemysław Strosznajder, Robert P. Strosznajder, Joanna B. |
author_sort | Jęśko, Henryk |
collection | PubMed |
description | Sirtuins (SIRT1–SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD(+) levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD(+)-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer’s disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-5357501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-53575012017-03-30 Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders Jęśko, Henryk Wencel, Przemysław Strosznajder, Robert P. Strosznajder, Joanna B. Neurochem Res Original Paper Sirtuins (SIRT1–SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD(+) levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD(+)-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer’s disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases. Springer US 2016-11-24 2017 /pmc/articles/PMC5357501/ /pubmed/27882448 http://dx.doi.org/10.1007/s11064-016-2110-y Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Jęśko, Henryk Wencel, Przemysław Strosznajder, Robert P. Strosznajder, Joanna B. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title | Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title_full | Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title_fullStr | Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title_full_unstemmed | Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title_short | Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders |
title_sort | sirtuins and their roles in brain aging and neurodegenerative disorders |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357501/ https://www.ncbi.nlm.nih.gov/pubmed/27882448 http://dx.doi.org/10.1007/s11064-016-2110-y |
work_keys_str_mv | AT jeskohenryk sirtuinsandtheirrolesinbrainagingandneurodegenerativedisorders AT wencelprzemysław sirtuinsandtheirrolesinbrainagingandneurodegenerativedisorders AT strosznajderrobertp sirtuinsandtheirrolesinbrainagingandneurodegenerativedisorders AT strosznajderjoannab sirtuinsandtheirrolesinbrainagingandneurodegenerativedisorders |