Cargando…

One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-oxo-dG as a clinical marker

Obesity has grown worldwide over the last few decades. In its different degrees, obesity is accompanied by many clinical and biochemical alterations reflecting the pathological condition of various body tissues. Among the mechanisms underlying the pathogenesis of obesity and associated complications...

Descripción completa

Detalles Bibliográficos
Autores principales: Monzo-Beltran, Lidia, Vazquez-Tarragón, Antonio, Cerdà, Concha, Garcia-Perez, Paula, Iradi, Antonio, Sánchez, Carlos, Climent, Benjamin, Tormos, Carmen, Vázquez-Prado, Antonio, Girbés, Javier, Estáñ, Nuria, Blesa, Sebastián, Cortés, Raquel, Chaves, Felipe J., Sáez, Guillermo T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357674/
https://www.ncbi.nlm.nih.gov/pubmed/28319890
http://dx.doi.org/10.1016/j.redox.2017.02.003
Descripción
Sumario:Obesity has grown worldwide over the last few decades. In its different degrees, obesity is accompanied by many clinical and biochemical alterations reflecting the pathological condition of various body tissues. Among the mechanisms underlying the pathogenesis of obesity and associated complications, oxidative stress (OS) may be playing an important role. In the present study, we have characterized at systemic level the degree of OS status in a group of morbid obese patients (BMI>40 kg/m(2)) at basal sate and its modulation during one year after bariatric surgery using the laparoscopic sleeve gastrectomy (LSG) technique. As compared with normal weight subjects matched in age, peripheral blood mononuclear cells (PBMc) of obese patients present a significant reduction of the antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) as well as a significant increase of the oxidized/reduced glutathione ratio (GSSG/GSH) in these cells. Lipid peroxidation is significantly increased in the patient group as shown by the increased levels of malondialdehyde (MDA) in PBMc and the amount of F2-Isoprostanes (F2-IsoPs) released in urine. In addition, the DNA damage product 8-oxo-7,8-2′-deoxyguanosine (8-oxo-dG) was also observed to be increased in serum and urine of morbid obese patients as compared with the control group. After LSG, an improvement of their ponderal and metabolic profile was accompanied by a progressive recovery of antioxidant enzyme activities and the decline of oxidative byproducts both in PBMc and biological fluids. The observed changes of urinary 8-oxo-dG levels correlate positively with its serum concentration, the lipid peroxidation products MDA and F2-IsoPs, triglycerides, glucose, insulin, HOMA index and body weight and negatively with the percentage of weight and BMI loss and antioxidant activities. We conclude that the analysis of urinary 8-oxo-dG could be validated as a useful marker for the monitoring of ponderal and metabolic status of morbid obese patients.