Cargando…
Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors
Hydatid, which is a parasitic disease, occurs today in many regions worldwide. Because it can present a serious threat to people’s health, finding a fast, convenient, and economical means of detection is important. This paper proposes a label- and spectrophotometer-free apparatus that uses optical b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357916/ https://www.ncbi.nlm.nih.gov/pubmed/28317861 http://dx.doi.org/10.1038/srep44798 |
Sumario: | Hydatid, which is a parasitic disease, occurs today in many regions worldwide. Because it can present a serious threat to people’s health, finding a fast, convenient, and economical means of detection is important. This paper proposes a label- and spectrophotometer-free apparatus that uses optical biological detection based on porous silicon microcavities. In this approach, the refractive index change induced by the biological reactions of a sample in a porous silicon microcavity is detected by measuring the change in the incidence angle corresponding to the maximum transmitted intensity of a near-infrared probe laser. This paper reports that the proposed method can achieve the label-free detection of 43 kDa molecular weight hydatid disease antigens with high sensitivity. |
---|