Cargando…
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Ba...
Autores principales: | Lustgarten, Jonathan Lyle, Balasubramanian, Jeya Balaji, Visweswaran, Shyam, Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358670/ https://www.ncbi.nlm.nih.gov/pubmed/28331847 http://dx.doi.org/10.3390/data2010005 |
Ejemplares similares
-
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
por: Balasubramanian, Jeya B., et al.
Publicado: (2014) -
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018) -
Knowledge-based variable selection for learning rules from proteomic data
por: Lustgarten, Jonathan L, et al.
Publicado: (2009) -
Application of an efficient Bayesian discretization method to biomedical data
por: Lustgarten, Jonathan L, et al.
Publicado: (2011) -
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
por: Ogoe, Henry A., et al.
Publicado: (2015)