Cargando…

Growth-altering microbial interactions are responsive to chemical context

Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on e...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Angela, Archer, Anne M., Biggs, Matthew B., Papin, Jason A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358735/
https://www.ncbi.nlm.nih.gov/pubmed/28319121
http://dx.doi.org/10.1371/journal.pone.0164919
Descripción
Sumario:Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on environmental context. We present a novel workflow for inferring microbial interactions that integrates semi-automated image analysis with a colony stamping mechanism, with the overall effect of improving throughput and reproducibility of colony interaction assays. We apply our approach to infer interactions among bacterial species associated with the normal lung microbiome, and how those interactions are altered by the presence of benzo[a]pyrene, a carcinogenic compound found in cigarettes. We found that the presence of this single compound changed the interaction network, demonstrating that microbial interactions are indeed dynamic and responsive to local chemical context.