Cargando…
Computer vision and machine learning for robust phenotyping in genome-wide studies
Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (...
Autores principales: | Zhang, Jiaoping, Naik, Hsiang Sing, Assefa, Teshale, Sarkar, Soumik, Reddy, R. V. Chowda, Singh, Arti, Ganapathysubramanian, Baskar, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358742/ https://www.ncbi.nlm.nih.gov/pubmed/28272456 http://dx.doi.org/10.1038/srep44048 |
Ejemplares similares
-
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
por: Naik, Hsiang Sing, et al.
Publicado: (2017) -
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean
por: Rairdin, Ashlyn, et al.
Publicado: (2022) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017)