Cargando…
Missing data and multiple imputation in clinical epidemiological research
Missing data are ubiquitous in clinical epidemiological research. Individuals with missing data may differ from those with no missing data in terms of the outcome of interest and prognosis in general. Missing data are often categorized into the following three types: missing completely at random (MC...
Autores principales: | Pedersen, Alma B, Mikkelsen, Ellen M, Cronin-Fenton, Deirdre, Kristensen, Nickolaj R, Pham, Tra My, Pedersen, Lars, Petersen, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358992/ https://www.ncbi.nlm.nih.gov/pubmed/28352203 http://dx.doi.org/10.2147/CLEP.S129785 |
Ejemplares similares
-
Selective serotonin reuptake inhibitor use and mortality, postoperative complications, and quality of care in hip fracture patients: a Danish nationwide cohort study
por: Bruun, Stine Bakkensen, et al.
Publicado: (2018) -
Selective serotonin reuptake inhibitor use in hip fracture patients: a Danish nationwide prevalence study
por: Bruun, Stine B, et al.
Publicado: (2019) -
Weighted multiple imputation of ethnicity data that are missing not at random in primary care databases
por: Pham, Tra My, et al.
Publicado: (2017) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018)