Cargando…
Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer
BACKGROUND: The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. T...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535902/ https://www.ncbi.nlm.nih.gov/pubmed/15555082 http://dx.doi.org/10.1186/1471-2091-5-17 |
_version_ | 1782122034051940352 |
---|---|
author | Bollivar, David W Clauson, Cheryl Lighthall, Rachel Forbes, Siiri Kokona, Bashkim Fairman, Robert Kundrat, Lenka Jaffe, Eileen K |
author_facet | Bollivar, David W Clauson, Cheryl Lighthall, Rachel Forbes, Siiri Kokona, Bashkim Fairman, Robert Kundrat, Lenka Jaffe, Eileen K |
author_sort | Bollivar, David W |
collection | PubMed |
description | BACKGROUND: The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. RESULTS: The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn(2+), or Mg(2+), which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the K(m )value shows an acidic pK(a )of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. CONCLUSION: The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific activity when compared to other octameric PBGS proteins. |
format | Text |
id | pubmed-535902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5359022004-12-17 Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer Bollivar, David W Clauson, Cheryl Lighthall, Rachel Forbes, Siiri Kokona, Bashkim Fairman, Robert Kundrat, Lenka Jaffe, Eileen K BMC Biochem Research Article BACKGROUND: The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. RESULTS: The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn(2+), or Mg(2+), which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the K(m )value shows an acidic pK(a )of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. CONCLUSION: The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific activity when compared to other octameric PBGS proteins. BioMed Central 2004-11-22 /pmc/articles/PMC535902/ /pubmed/15555082 http://dx.doi.org/10.1186/1471-2091-5-17 Text en Copyright © 2004 Bollivar et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bollivar, David W Clauson, Cheryl Lighthall, Rachel Forbes, Siiri Kokona, Bashkim Fairman, Robert Kundrat, Lenka Jaffe, Eileen K Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title | Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title_full | Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title_fullStr | Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title_full_unstemmed | Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title_short | Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
title_sort | rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535902/ https://www.ncbi.nlm.nih.gov/pubmed/15555082 http://dx.doi.org/10.1186/1471-2091-5-17 |
work_keys_str_mv | AT bollivardavidw rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT clausoncheryl rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT lighthallrachel rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT forbessiiri rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT kokonabashkim rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT fairmanrobert rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT kundratlenka rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer AT jaffeeileenk rhodobactercapsulatusporphobilinogensynthaseahighactivitymetalionindependenthexamer |