Cargando…
Nonpher: computational method for design of hard-to-synthesize structures
In cheminformatics, machine learning methods are typically used to classify chemical compounds into distinctive classes such as active/nonactive or toxic/nontoxic. To train a classifier, a training data set must consist of examples from both positive and negative classes. While a biological activity...
Autores principales: | Voršilák, Milan, Svozil, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359269/ https://www.ncbi.nlm.nih.gov/pubmed/29086122 http://dx.doi.org/10.1186/s13321-017-0206-2 |
Ejemplares similares
-
Profiling and analysis of chemical compounds using pointwise mutual information
por: Čmelo, I., et al.
Publicado: (2021) -
Molpher: a software framework for systematic chemical space exploration
por: Hoksza, David, et al.
Publicado: (2014) -
SYBA: Bayesian estimation of synthetic accessibility of organic compounds
por: Voršilák, Milan, et al.
Publicado: (2020) -
Comment on “The power metric: a new statistically robust enrichment-type metric for virtual screening applications with early recovery capability”
por: Šícho, M., et al.
Publicado: (2018) -
A comparison of meta-analytic methods for synthesizing evidence from explanatory and pragmatic trials
por: Sajobi, Tolulope T., et al.
Publicado: (2018)