Cargando…
Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade
Resveratrol (RSV) is a natural compound exhibiting anti-inflammatory effect, but the anti-inflammatory mechanism has not been fully understood. This study is aimed to evaluate the anti-inflammatory activity and mechanism of RSV in lipopolysaccharides-induced rats’ model. The visceral wet/dry weight...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359552/ https://www.ncbi.nlm.nih.gov/pubmed/28322346 http://dx.doi.org/10.1038/srep45006 |
Sumario: | Resveratrol (RSV) is a natural compound exhibiting anti-inflammatory effect, but the anti-inflammatory mechanism has not been fully understood. This study is aimed to evaluate the anti-inflammatory activity and mechanism of RSV in lipopolysaccharides-induced rats’ model. The visceral wet/dry weight ratios and the changes of hematologic and biochemical indices indicated that LPS- stimulation mainly caused damages to liver and lung, while pretreatment with RSV could alleviate the lesions. The cytokine assays showed that RSV could markedly decrease the production of proinflammatory mediators and cytokines (IL-1, IL-1β, IL-6, NO, iNOS and COX-2), and increase the expression of anti-inflammatory mediator (IL-10). RSV could inhibit TLR4 signaling pathway by down-regulating the mRNA levels of MyD88 and TRAF6, and suppressing the TLR4 protein. RSV could inhibit the signaling cascades of NF-κBp65 and MAPKs through down-regulating the mRNA levels of IκBα, p38MAPK, JNK, ERK1, ERK2 and ERK5 in liver and lung, and suppressing the dynamic changes of proteins and phosphorylated proteins including IκBα, NF-κBp65, p38MAPK, JNK, ERK1/2 and ERK5 from tissue’s cytoplasm to nucleus. In conclusion, RSV possessed a therapeutic effect on LPS-induced inflammation in rats and the mechanism mainly attributed to suppressing the signaling cascades of NF-κBp65 and MAPKs by inhibiting the TLR4 signaling pathway. |
---|