Cargando…
Reconstruction of noise-driven nonlinear networks from node outputs by using high-order correlations
Many practical systems can be described by dynamic networks, for which modern technique can measure their outputs, and accumulate extremely rich data. Nevertheless, the network structures producing these data are often deeply hidden in the data. The problem of inferring network structures by analyzi...
Autores principales: | Chen, Yang, Zhang, Zhaoyang, Chen, Tianyu, Wang, Shihong, Hu, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359559/ https://www.ncbi.nlm.nih.gov/pubmed/28322230 http://dx.doi.org/10.1038/srep44639 |
Ejemplares similares
-
Improving reduced-order models through nonlinear decoding of projection-dependent outputs
por: Zdybał, Kamila, et al.
Publicado: (2023) -
Cone photoreceptor contributions to noise and correlations in the retinal output
por: Ala-Laurila, Petri, et al.
Publicado: (2011) -
Switching Correlation and Noise Level in Pr(3+):YSO Crystal via Dressing Nonlinear Phase
por: Ahmed, Irfan, et al.
Publicado: (2016) -
Weighted Measurement Fusion Particle Filter for Nonlinear Systems with Correlated Noises
por: Zhang, Ke Wei, et al.
Publicado: (2018) -
Nonlinearity-enabled higher-order exceptional singularities with ultra-enhanced signal-to-noise ratio
por: Bai, Kai, et al.
Publicado: (2022)