Cargando…
Hydroxide-bridged five-coordinate Dy(III) single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers
A hydroxide-bridged centrosymmetric Dy(III) dimer with each Dy(III) being five-coordinated has been synthesized using bulky hindered phenolate ligands. Magnetic studies revealed that this compound exhibits a slow magnetic relaxation of a single-ion origin together with a step-like magnetic hysteresi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359878/ https://www.ncbi.nlm.nih.gov/pubmed/28451271 http://dx.doi.org/10.1039/c6sc03621j |
Sumario: | A hydroxide-bridged centrosymmetric Dy(III) dimer with each Dy(III) being five-coordinated has been synthesized using bulky hindered phenolate ligands. Magnetic studies revealed that this compound exhibits a slow magnetic relaxation of a single-ion origin together with a step-like magnetic hysteresis of the magnetic coupled cluster. The thermal relaxation barrier of magnetization is 721 K in the absence of a static magnetic field, while the intramolecular magnetic interaction is very large among reported 4f-only dimers. CASSCF calculations with a larger active space were performed to understand the electronic structure of the compound. The thermal relaxation regime and the quantum tunneling regime are well separated, representing a good model to study the relaxation mechanism of SMMs with intramolecular Dy–Dy magnetic interactions. |
---|