Cargando…
The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding
The recent “deep learning revolution” in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an i...
Autores principales: | Testolin, Alberto, De Filippo De Grazia, Michele, Zorzi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360096/ https://www.ncbi.nlm.nih.gov/pubmed/28377709 http://dx.doi.org/10.3389/fncom.2017.00013 |
Ejemplares similares
-
Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions
por: Testolin, Alberto, et al.
Publicado: (2016) -
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
por: Testolin, Alberto, et al.
Publicado: (2013) -
A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients
por: Calesella, Federico, et al.
Publicado: (2021) -
Population Coding of Visual Space: Modeling
por: Lehky, Sidney R., et al.
Publicado: (2011) -
A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images
por: Chauhan, Sucheta, et al.
Publicado: (2019)