Cargando…
Local structure preserving sparse coding for infrared target recognition
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for...
Autores principales: | Han, Jing, Yue, Jiang, Zhang, Yi, Bai, Lianfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360252/ https://www.ncbi.nlm.nih.gov/pubmed/28323824 http://dx.doi.org/10.1371/journal.pone.0173613 |
Ejemplares similares
-
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections
por: Zhu, Xiangbin, et al.
Publicado: (2016) -
Correntropy-Induced Discriminative Nonnegative Sparse Coding for Robust Palmprint Recognition
por: Jing, Kunlei, et al.
Publicado: (2020) -
Fast Approximation for Sparse Coding with Applications to Object Recognition
por: Sun, Zhenzhen, et al.
Publicado: (2021) -
Locality Constrained Joint Dynamic Sparse Representation for Local Matching Based Face Recognition
por: Wang, Jianzhong, et al.
Publicado: (2014) -
Sparsey™: event recognition via deep hierarchical sparse distributed codes
por: Rinkus, Gerard J.
Publicado: (2014)