Cargando…
Extraction of features from sleep EEG for Bayesian assessment of brain development
Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts’ agreement. The knowledge of predictive posterior distribution allows experts...
Autores principales: | Schetinin, Vitaly, Jakaite, Livija |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360314/ https://www.ncbi.nlm.nih.gov/pubmed/28323852 http://dx.doi.org/10.1371/journal.pone.0174027 |
Ejemplares similares
-
Bayesian Assessment of Newborn Brain Maturity from Two-Channel Sleep Electroencephalograms
por: Jakaite, Livija, et al.
Publicado: (2012) -
Deep learning for early detection of pathological changes in X-ray bone microstructures: case of osteoarthritis
por: Jakaite, Livija, et al.
Publicado: (2021) -
EEG Feature Extraction Using Evolutionary Algorithms for Brain-Computer Interface Development
por: Rocha-Herrera, César Alfredo, et al.
Publicado: (2022) -
Case comparison of sleep features from ear-EEG and scalp-EEG
por: Zibrandtsen, I., et al.
Publicado: (2016) -
Categorisation of EEG suppression using enhanced feature extraction for SUDEP risk assessment
por: Mier, Juan C., et al.
Publicado: (2020)