Cargando…
LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis
The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360334/ https://www.ncbi.nlm.nih.gov/pubmed/28323888 http://dx.doi.org/10.1371/journal.pone.0174357 |
_version_ | 1782516576344342528 |
---|---|
author | Yu, Eun-Jeong Hooker, Erika Johnson, Daniel T. Kwak, Mi Kyung Zou, Kang Luong, Richard He, Yongfeng Sun, Zijie |
author_facet | Yu, Eun-Jeong Hooker, Erika Johnson, Daniel T. Kwak, Mi Kyung Zou, Kang Luong, Richard He, Yongfeng Sun, Zijie |
author_sort | Yu, Eun-Jeong |
collection | PubMed |
description | The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis. |
format | Online Article Text |
id | pubmed-5360334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53603342017-04-06 LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis Yu, Eun-Jeong Hooker, Erika Johnson, Daniel T. Kwak, Mi Kyung Zou, Kang Luong, Richard He, Yongfeng Sun, Zijie PLoS One Research Article The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis. Public Library of Science 2017-03-21 /pmc/articles/PMC5360334/ /pubmed/28323888 http://dx.doi.org/10.1371/journal.pone.0174357 Text en © 2017 Yu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yu, Eun-Jeong Hooker, Erika Johnson, Daniel T. Kwak, Mi Kyung Zou, Kang Luong, Richard He, Yongfeng Sun, Zijie LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title | LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title_full | LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title_fullStr | LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title_full_unstemmed | LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title_short | LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis |
title_sort | lzts2 and pten collaboratively regulate ß-catenin in prostatic tumorigenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360334/ https://www.ncbi.nlm.nih.gov/pubmed/28323888 http://dx.doi.org/10.1371/journal.pone.0174357 |
work_keys_str_mv | AT yueunjeong lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT hookererika lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT johnsondanielt lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT kwakmikyung lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT zoukang lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT luongrichard lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT heyongfeng lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis AT sunzijie lzts2andptencollaborativelyregulateßcatenininprostatictumorigenesis |