Cargando…

Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells

PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of...

Descripción completa

Detalles Bibliográficos
Autores principales: Samuel, William, Jaworski, Cynthia, Postnikova, Olga. A., Kutty, R. Krishnan, Duncan, Todd, Tan, Li Xuan, Poliakov, Eugenia, Lakkaraju, Aparna, Redmond, T. Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360456/
https://www.ncbi.nlm.nih.gov/pubmed/28356702
_version_ 1782516609956446208
author Samuel, William
Jaworski, Cynthia
Postnikova, Olga. A.
Kutty, R. Krishnan
Duncan, Todd
Tan, Li Xuan
Poliakov, Eugenia
Lakkaraju, Aparna
Redmond, T. Michael
author_facet Samuel, William
Jaworski, Cynthia
Postnikova, Olga. A.
Kutty, R. Krishnan
Duncan, Todd
Tan, Li Xuan
Poliakov, Eugenia
Lakkaraju, Aparna
Redmond, T. Michael
author_sort Samuel, William
collection PubMed
description PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former’s inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)–PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell–derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.
format Online
Article
Text
id pubmed-5360456
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-53604562017-03-29 Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells Samuel, William Jaworski, Cynthia Postnikova, Olga. A. Kutty, R. Krishnan Duncan, Todd Tan, Li Xuan Poliakov, Eugenia Lakkaraju, Aparna Redmond, T. Michael Mol Vis Research Article PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former’s inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)–PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell–derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated. Molecular Vision 2017-03-05 /pmc/articles/PMC5360456/ /pubmed/28356702 Text en Copyright © 2017 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Samuel, William
Jaworski, Cynthia
Postnikova, Olga. A.
Kutty, R. Krishnan
Duncan, Todd
Tan, Li Xuan
Poliakov, Eugenia
Lakkaraju, Aparna
Redmond, T. Michael
Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title_full Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title_fullStr Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title_full_unstemmed Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title_short Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells
title_sort appropriately differentiated arpe-19 cells regain phenotype and gene expression profiles similar to those of native rpe cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360456/
https://www.ncbi.nlm.nih.gov/pubmed/28356702
work_keys_str_mv AT samuelwilliam appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT jaworskicynthia appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT postnikovaolgaa appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT kuttyrkrishnan appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT duncantodd appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT tanlixuan appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT poliakoveugenia appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT lakkarajuaparna appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells
AT redmondtmichael appropriatelydifferentiatedarpe19cellsregainphenotypeandgeneexpressionprofilessimilartothoseofnativerpecells