Cargando…
Characterisation of mental health conditions in social media using Informed Deep Learning
The number of people affected by mental illness is on the increase and with it the burden on health and social care use, as well as the loss of both productivity and quality-adjusted life-years. Natural language processing of electronic health records is increasingly used to study mental health cond...
Autores principales: | Gkotsis, George, Oellrich, Anika, Velupillai, Sumithra, Liakata, Maria, Hubbard, Tim J. P., Dobson, Richard J. B., Dutta, Rina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361083/ https://www.ncbi.nlm.nih.gov/pubmed/28327593 http://dx.doi.org/10.1038/srep45141 |
Ejemplares similares
-
Corrigendum: Characterisation of mental health conditions in social media using Informed Deep Learning
por: Gkotsis, George, et al.
Publicado: (2017) -
Temporal and diurnal variation in social media posts to a suicide support forum
por: Dutta, Rina, et al.
Publicado: (2021) -
Knowledge discovery for Deep Phenotyping serious mental illness from Electronic Mental Health records
por: Jackson, Richard, et al.
Publicado: (2018) -
Temporal information extraction from mental health records to identify duration of untreated psychosis
por: Viani, Natalia, et al.
Publicado: (2020) -
Maximizing the positive and minimizing the negative: Social media data to study youth mental health with informed consent
por: Leightley, Daniel, et al.
Publicado: (2023)