Cargando…
Long-term stability and reusability of molecularly imprinted polymers
Molecularly imprinted materials are man-made mimics of biological receptors. Their polymer network has recognition sites complementary to a substrate in terms of size, shape and chemical functionality. They have diverse applications in various chemical, biomedical and engineering fields such as soli...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361172/ https://www.ncbi.nlm.nih.gov/pubmed/28496524 http://dx.doi.org/10.1039/c6py01853j |
_version_ | 1782516718740963328 |
---|---|
author | Kupai, Jozsef Razali, Mayamin Buyuktiryaki, Sibel Kecili, Rustem Szekely, Gyorgy |
author_facet | Kupai, Jozsef Razali, Mayamin Buyuktiryaki, Sibel Kecili, Rustem Szekely, Gyorgy |
author_sort | Kupai, Jozsef |
collection | PubMed |
description | Molecularly imprinted materials are man-made mimics of biological receptors. Their polymer network has recognition sites complementary to a substrate in terms of size, shape and chemical functionality. They have diverse applications in various chemical, biomedical and engineering fields such as solid phase extraction, catalysis, drug delivery, pharmaceutical purification, (bio)sensors, water treatment, membrane separations and proteomics. The stability and reusability of molecularly imprinted polymers (IPs) have crucial roles in developing applications that are reliable, economic and sustainable. In the present article the effect of crosslinkers, functional monomers and conditions for template extraction on the long-term stability and reusability of IPs was systematically investigated. Adsorption capacity, selectivity, morphology and thermal decomposition of eleven different l-phenylalanine methyl ester imprinted polymers were studied to reveal performance loss over 100 adsorption–regeneration cycles. Furthermore, crosslinker and functional monomer specific reversible and irreversible decomposition of imprinted polymers as a result of adsorbent regeneration were investigated through adsorption studies, electron microscopy, N(2) adsorption and thermogravimetric analysis. A decomposition mechanism was proposed and revealed using NMR spectroscopy. Solutions to avoid or overcome the limitations of the most common crosslinkers, functional monomers and extraction techniques were proposed and experimentally validated. |
format | Online Article Text |
id | pubmed-5361172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-53611722017-05-09 Long-term stability and reusability of molecularly imprinted polymers Kupai, Jozsef Razali, Mayamin Buyuktiryaki, Sibel Kecili, Rustem Szekely, Gyorgy Polym Chem Chemistry Molecularly imprinted materials are man-made mimics of biological receptors. Their polymer network has recognition sites complementary to a substrate in terms of size, shape and chemical functionality. They have diverse applications in various chemical, biomedical and engineering fields such as solid phase extraction, catalysis, drug delivery, pharmaceutical purification, (bio)sensors, water treatment, membrane separations and proteomics. The stability and reusability of molecularly imprinted polymers (IPs) have crucial roles in developing applications that are reliable, economic and sustainable. In the present article the effect of crosslinkers, functional monomers and conditions for template extraction on the long-term stability and reusability of IPs was systematically investigated. Adsorption capacity, selectivity, morphology and thermal decomposition of eleven different l-phenylalanine methyl ester imprinted polymers were studied to reveal performance loss over 100 adsorption–regeneration cycles. Furthermore, crosslinker and functional monomer specific reversible and irreversible decomposition of imprinted polymers as a result of adsorbent regeneration were investigated through adsorption studies, electron microscopy, N(2) adsorption and thermogravimetric analysis. A decomposition mechanism was proposed and revealed using NMR spectroscopy. Solutions to avoid or overcome the limitations of the most common crosslinkers, functional monomers and extraction techniques were proposed and experimentally validated. Royal Society of Chemistry 2017-01-28 2016-11-24 /pmc/articles/PMC5361172/ /pubmed/28496524 http://dx.doi.org/10.1039/c6py01853j Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Kupai, Jozsef Razali, Mayamin Buyuktiryaki, Sibel Kecili, Rustem Szekely, Gyorgy Long-term stability and reusability of molecularly imprinted polymers |
title | Long-term stability and reusability of molecularly imprinted polymers
|
title_full | Long-term stability and reusability of molecularly imprinted polymers
|
title_fullStr | Long-term stability and reusability of molecularly imprinted polymers
|
title_full_unstemmed | Long-term stability and reusability of molecularly imprinted polymers
|
title_short | Long-term stability and reusability of molecularly imprinted polymers
|
title_sort | long-term stability and reusability of molecularly imprinted polymers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361172/ https://www.ncbi.nlm.nih.gov/pubmed/28496524 http://dx.doi.org/10.1039/c6py01853j |
work_keys_str_mv | AT kupaijozsef longtermstabilityandreusabilityofmolecularlyimprintedpolymers AT razalimayamin longtermstabilityandreusabilityofmolecularlyimprintedpolymers AT buyuktiryakisibel longtermstabilityandreusabilityofmolecularlyimprintedpolymers AT kecilirustem longtermstabilityandreusabilityofmolecularlyimprintedpolymers AT szekelygyorgy longtermstabilityandreusabilityofmolecularlyimprintedpolymers |