Cargando…
Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua
Understanding how insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) interact with their hosts is crucial to fully explain the molecular bases of Bt specificity and insecticidal activity. Previous studies support ATP binding cassette transporters (ABCC2/3) and one cadherin-like pro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361178/ https://www.ncbi.nlm.nih.gov/pubmed/28327568 http://dx.doi.org/10.1038/srep45007 |
Sumario: | Understanding how insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) interact with their hosts is crucial to fully explain the molecular bases of Bt specificity and insecticidal activity. Previous studies support ATP binding cassette transporters (ABCC2/3) and one cadherin-like protein are Cry1Ac functional receptors in the beet armyworm (Spodoptera exigua). In this study, a combined one-dimensional gel electrophoresis and immunoblotting approach identified aminopeptidase N (APNs) as putative Cry1Ac binding proteins in the midgut brush border membrane of S. exigua larvae. Functional analyses by gene silencing of six different S. exigua APN genes (SeAPN1, SeAPN2, SeAPN3, SeAPN4, SeAPN5 and SeAPN6) showed that only suppression of SeAPN1 resulted in decreased larval susceptibility to Cry1Ac toxin. These results support that SeAPN1 plays important functional role in Cry1Ac toxicity in S. exigua. |
---|