Cargando…
KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies
BACKGROUND: Finding epistatic interactions in large association studies like genome-wide association studies (GWAS) with the nowadays-available large volume of genomic data is a challenging and largely unsolved issue. Few previous studies could handle genome-wide data due to the intractable difficul...
Autores principales: | Abo Alchamlat, Sinan, Farnir, Frédéric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361736/ https://www.ncbi.nlm.nih.gov/pubmed/28327091 http://dx.doi.org/10.1186/s12859-017-1599-7 |
Ejemplares similares
-
Aggregation of experts: an application in the field of “interactomics” (detection of interactions on the basis of genomic data)
por: Abo Alchamlat, Sinan, et al.
Publicado: (2018) -
BS-KNN: An Effective Algorithm for Predicting Protein Subchloroplast Localization
por: Hu, Jing, et al.
Publicado: (2012) -
Comparison of kNN and k-means optimization methods of reference set selection for improved CNV callers performance
por: Kuśmirek, Wiktor, et al.
Publicado: (2019) -
Random KNN feature selection - a fast and stable alternative to Random Forests
por: Li, Shengqiao, et al.
Publicado: (2011) -
Mapping genome-wide transcription factor binding sites in frozen tissues
por: Savic, Daniel, et al.
Publicado: (2013)