Cargando…

MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()

Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yadav, Sanjay, Singh, Nishant, Shah, Parag P., Rowbotham, David A., Malik, Danial, Srivastav, Ankita, Shankar, Jai, Lam, Wan L., Lockwood, William W., Beverly, Levi J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361868/
https://www.ncbi.nlm.nih.gov/pubmed/28315615
http://dx.doi.org/10.1016/j.neo.2017.02.001
_version_ 1782516853679063040
author Yadav, Sanjay
Singh, Nishant
Shah, Parag P.
Rowbotham, David A.
Malik, Danial
Srivastav, Ankita
Shankar, Jai
Lam, Wan L.
Lockwood, William W.
Beverly, Levi J.
author_facet Yadav, Sanjay
Singh, Nishant
Shah, Parag P.
Rowbotham, David A.
Malik, Danial
Srivastav, Ankita
Shankar, Jai
Lam, Wan L.
Lockwood, William W.
Beverly, Levi J.
author_sort Yadav, Sanjay
collection PubMed
description Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a reason for the loss of UBQLN has not been proposed, nor has a selective pressure that could lead to deletion of UBQLN been reported. Diesel Exhaust Particles (DEP) are a major concern in the large cities of developing nations and DEP exposed populations are at an increased risk of developing a number of illnesses, including lung cancer. A connection between DEP and UBQLN has never been examined. In the present study, we determined the effect of DEP on lung cell lines and were interested to determine if UBQLN proteins could potentially play a protective role following treatment with DEP. Interestingly, we found that DEP treated cells have increased expression of UBQLN proteins. In fact, over-expression of UBQLN was capable of protecting cells from DEP toxicity. To investigate the mechanism by which DEP leads to increased UBQLN protein levels, we identified and interrogated microRNAs that were predicted to regulate UBQLN mRNA. We found that DEP decreases the oncogenic microRNA, MIR155. Further, we showed that MIR155 regulates the mRNA of UBQLN1 and UBQLN2 in cells, such that increased MIR155 expression increased cell invasion, migration, wound formation and clonogenicity in UBQLN-loss dependent manner. This is the first report of an environmental carcinogen regulating expression of UBQLN proteins. We show that exposure of cells to DEP causes an increase in UBQLN levels and that MIR155 regulates mRNA of UBQLN. Thus, we propose that DEP-induced repression of MIR155 leads to increased UBQLN levels, which in turn may be a selective pressure on lung cells to lose UBQLN1.
format Online
Article
Text
id pubmed-5361868
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-53618682017-03-28 MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()() Yadav, Sanjay Singh, Nishant Shah, Parag P. Rowbotham, David A. Malik, Danial Srivastav, Ankita Shankar, Jai Lam, Wan L. Lockwood, William W. Beverly, Levi J. Neoplasia Original article Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a reason for the loss of UBQLN has not been proposed, nor has a selective pressure that could lead to deletion of UBQLN been reported. Diesel Exhaust Particles (DEP) are a major concern in the large cities of developing nations and DEP exposed populations are at an increased risk of developing a number of illnesses, including lung cancer. A connection between DEP and UBQLN has never been examined. In the present study, we determined the effect of DEP on lung cell lines and were interested to determine if UBQLN proteins could potentially play a protective role following treatment with DEP. Interestingly, we found that DEP treated cells have increased expression of UBQLN proteins. In fact, over-expression of UBQLN was capable of protecting cells from DEP toxicity. To investigate the mechanism by which DEP leads to increased UBQLN protein levels, we identified and interrogated microRNAs that were predicted to regulate UBQLN mRNA. We found that DEP decreases the oncogenic microRNA, MIR155. Further, we showed that MIR155 regulates the mRNA of UBQLN1 and UBQLN2 in cells, such that increased MIR155 expression increased cell invasion, migration, wound formation and clonogenicity in UBQLN-loss dependent manner. This is the first report of an environmental carcinogen regulating expression of UBQLN proteins. We show that exposure of cells to DEP causes an increase in UBQLN levels and that MIR155 regulates mRNA of UBQLN. Thus, we propose that DEP-induced repression of MIR155 leads to increased UBQLN levels, which in turn may be a selective pressure on lung cells to lose UBQLN1. Neoplasia Press 2017-03-16 /pmc/articles/PMC5361868/ /pubmed/28315615 http://dx.doi.org/10.1016/j.neo.2017.02.001 Text en Crown Copyright © 2017 Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original article
Yadav, Sanjay
Singh, Nishant
Shah, Parag P.
Rowbotham, David A.
Malik, Danial
Srivastav, Ankita
Shankar, Jai
Lam, Wan L.
Lockwood, William W.
Beverly, Levi J.
MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title_full MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title_fullStr MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title_full_unstemmed MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title_short MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis()()
title_sort mir155 regulation of ubiquilin1 and ubiquilin2: implications in cellular protection and tumorigenesis()()
topic Original article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361868/
https://www.ncbi.nlm.nih.gov/pubmed/28315615
http://dx.doi.org/10.1016/j.neo.2017.02.001
work_keys_str_mv AT yadavsanjay mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT singhnishant mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT shahparagp mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT rowbothamdavida mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT malikdanial mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT srivastavankita mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT shankarjai mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT lamwanl mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT lockwoodwilliamw mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis
AT beverlylevij mir155regulationofubiquilin1andubiquilin2implicationsincellularprotectionandtumorigenesis