Cargando…
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultiv...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362078/ https://www.ncbi.nlm.nih.gov/pubmed/28328988 http://dx.doi.org/10.1371/journal.pone.0174165 |
_version_ | 1782516897444528128 |
---|---|
author | Ishemgulova, Aygul Butenko, Anzhelika Kortišová, Lucie Boucinha, Carolina Grybchuk-Ieremenko, Anastasiia Morelli, Karina A. Tesařová, Martina Kraeva, Natalya Grybchuk, Danyil Pánek, Tomáš Flegontov, Pavel Lukeš, Julius Votýpka, Jan Pavan, Márcio Galvão Opperdoes, Fred R. Spodareva, Viktoria d'Avila-Levy, Claudia M. Kostygov, Alexei Yu. Yurchenko, Vyacheslav |
author_facet | Ishemgulova, Aygul Butenko, Anzhelika Kortišová, Lucie Boucinha, Carolina Grybchuk-Ieremenko, Anastasiia Morelli, Karina A. Tesařová, Martina Kraeva, Natalya Grybchuk, Danyil Pánek, Tomáš Flegontov, Pavel Lukeš, Julius Votýpka, Jan Pavan, Márcio Galvão Opperdoes, Fred R. Spodareva, Viktoria d'Avila-Levy, Claudia M. Kostygov, Alexei Yu. Yurchenko, Vyacheslav |
author_sort | Ishemgulova, Aygul |
collection | PubMed |
description | In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates. |
format | Online Article Text |
id | pubmed-5362078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53620782017-04-06 Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila Ishemgulova, Aygul Butenko, Anzhelika Kortišová, Lucie Boucinha, Carolina Grybchuk-Ieremenko, Anastasiia Morelli, Karina A. Tesařová, Martina Kraeva, Natalya Grybchuk, Danyil Pánek, Tomáš Flegontov, Pavel Lukeš, Julius Votýpka, Jan Pavan, Márcio Galvão Opperdoes, Fred R. Spodareva, Viktoria d'Avila-Levy, Claudia M. Kostygov, Alexei Yu. Yurchenko, Vyacheslav PLoS One Research Article In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates. Public Library of Science 2017-03-22 /pmc/articles/PMC5362078/ /pubmed/28328988 http://dx.doi.org/10.1371/journal.pone.0174165 Text en © 2017 Ishemgulova et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ishemgulova, Aygul Butenko, Anzhelika Kortišová, Lucie Boucinha, Carolina Grybchuk-Ieremenko, Anastasiia Morelli, Karina A. Tesařová, Martina Kraeva, Natalya Grybchuk, Danyil Pánek, Tomáš Flegontov, Pavel Lukeš, Julius Votýpka, Jan Pavan, Márcio Galvão Opperdoes, Fred R. Spodareva, Viktoria d'Avila-Levy, Claudia M. Kostygov, Alexei Yu. Yurchenko, Vyacheslav Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title | Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title_full | Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title_fullStr | Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title_full_unstemmed | Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title_short | Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila |
title_sort | molecular mechanisms of thermal resistance of the insect trypanosomatid crithidia thermophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362078/ https://www.ncbi.nlm.nih.gov/pubmed/28328988 http://dx.doi.org/10.1371/journal.pone.0174165 |
work_keys_str_mv | AT ishemgulovaaygul molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT butenkoanzhelika molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT kortisovalucie molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT boucinhacarolina molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT grybchukieremenkoanastasiia molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT morellikarinaa molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT tesarovamartina molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT kraevanatalya molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT grybchukdanyil molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT panektomas molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT flegontovpavel molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT lukesjulius molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT votypkajan molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT pavanmarciogalvao molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT opperdoesfredr molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT spodarevaviktoria molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT davilalevyclaudiam molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT kostygovalexeiyu molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila AT yurchenkovyacheslav molecularmechanismsofthermalresistanceoftheinsecttrypanosomatidcrithidiathermophila |