Cargando…
Particle MCMC algorithms and architectures for accelerating inference in state-space models()
Particle Markov Chain Monte Carlo (pMCMC) is a stochastic algorithm designed to generate samples from a probability distribution, when the density of the distribution does not admit a closed form expression. pMCMC is most commonly used to sample from the Bayesian posterior distribution in State-Spac...
Autores principales: | Mingas, Grigorios, Bottolo, Leonardo, Bouganis, Christos-Savvas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
North-Holland
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362159/ https://www.ncbi.nlm.nih.gov/pubmed/28373744 http://dx.doi.org/10.1016/j.ijar.2016.10.011 |
Ejemplares similares
-
Accelerating MCMC algorithms
por: Robert, Christian P., et al.
Publicado: (2018) -
FPGA acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods
por: Zierke, Stephanie, et al.
Publicado: (2010) -
Inferring entire spiking activity from local field potentials
por: Ahmadi, Nur, et al.
Publicado: (2021) -
Quantifying MCMC Exploration of Phylogenetic Tree Space
por: Whidden, Chris, et al.
Publicado: (2015) -
Inference of regulatory networks with a convergence improved MCMC sampler
por: Agostinho, Nilzair B., et al.
Publicado: (2015)