Cargando…

Activation of Akt by SC79 protects myocardiocytes from oxygen and glucose deprivation (OGD)/re-oxygenation

SC79 is a novel Akt activator. The current study tested its potential effect against oxygen and glucose deprivation (OGD)/re-oxygenation-induced myocardial cell death. We showed that SC79 activated Akt and protected H9c2 myocardial cells and primary murine myocardiocytes from OGD/re-oxygenation. Rev...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Koulong, Zhang, Qing, Lin, Gang, Li, Yefei, Sheng, Zhenqiang, Wang, Jue, Chen, Liang, Lu, Hui-he
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362459/
https://www.ncbi.nlm.nih.gov/pubmed/28122357
http://dx.doi.org/10.18632/oncotarget.14785
Descripción
Sumario:SC79 is a novel Akt activator. The current study tested its potential effect against oxygen and glucose deprivation (OGD)/re-oxygenation-induced myocardial cell death. We showed that SC79 activated Akt and protected H9c2 myocardial cells and primary murine myocardiocytes from OGD/re-oxygenation. Reversely, Akt inhibitor MK-2206 or Akt1 shRNA knockdown almost completely abolished SC79-mediated myocardial cytoprotection. SC79 treatment in H9c2 cells inhibited OGD/re-oxygenation-induced programmed necrosis pathway, evidenced by mitochondrial depolarization and cyclophilin D-p53-ANT-1 (adenine nucleotide translocator 1) association. Further, SC79 activated Akt downstream NF-E2-related factor 2 (NRF2) signaling to suppress OGD/re-oxygenation-induced reactive oxygen species (ROS) production. Reversely, NRF2 shRNA knockdown in H9c2 cells largely attenuated SC79-induced ROS scavenging ability and cytoprotection against OGD/re-oxygenation. Together, we conclude that activation of Akt by SC79 protects myocardial cells from OGD/re-oxygenation.