Cargando…

Liver X receptors agonist GW3965 re-sensitizes gefitinib-resistant human non-small cell lung cancer cell to gefitinib treatment by inhibiting NF-κB in vitro

The recent research shows that the inhibition of the nuclear factor-κB (NF-κB) pathway is a promising therapeutic option for patients who progress after treatment with the novel mutant-selective EGFR-TKIs. For propose to find a nontoxic drug to reverse the acquired gefitinib resistance, we examined...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yong, Zang, Jialan, Cao, Haixia, Wu, Ying, Yan, Dali, Qin, Xiaobing, Zhou, Leilei, Fan, Fan, Ni, Jie, Xu, Xiaoyue, Sha, Huanhuan, Liu, Siwen, Yu, Shaorong, Wang, Zhuo, Ma, Rong, Wu, Jianzhong, Feng, Jifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362524/
https://www.ncbi.nlm.nih.gov/pubmed/28178657
http://dx.doi.org/10.18632/oncotarget.15007
Descripción
Sumario:The recent research shows that the inhibition of the nuclear factor-κB (NF-κB) pathway is a promising therapeutic option for patients who progress after treatment with the novel mutant-selective EGFR-TKIs. For propose to find a nontoxic drug to reverse the acquired gefitinib resistance, we examined whether the Liver X Receptors agonist GW3965 affect gefitinib resistance of HCC827/GR-8-2 cells. Cell viability was measured by CCK-8 assay. Levels of NF-κB, p-AKT and caspases were detected by Western blot analysis. Immunocytochemical analysis was used to detect the expression of NF-κB, p-AKT intracellularly. Induction of apoptosis and cell cycle arrest was measured by Flow cytometry assay. And results revealed that more than 90% of HCC827/GR-8-2 cells lived upon treatment with gefitinib at a dose of 5μM for 48h. However, when under the combine treatment of GW3965 (5μM) & gefitinib(5μM), cell death rate was increased observably. Co-administration of gefitinib & GW3965 induced cell apoptosis and cell cycle arrest. Additionally, we observed a dose-dependent- down-regulation of NF-κB in HCC827/GR-8-2 cells treated with gefitinib & GW3965. GW3965 and gefitinib synergistically decreased cell proliferation and induced apoptosis by inhibiting NF-κB signaling pathway in gefitinib resistant cells. These findings support our hypothesis that GW3965 could act as a useful drug to reverse the gefitinib resistance.