Cargando…
Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices
Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362936/ https://www.ncbi.nlm.nih.gov/pubmed/28374008 http://dx.doi.org/10.1523/ENEURO.0037-17.2017 |
_version_ | 1782517052890677248 |
---|---|
author | Bieler, Malte Sieben, Kay Cichon, Nicole Schildt, Sandra Röder, Brigitte Hanganu-Opatz, Ileana L. |
author_facet | Bieler, Malte Sieben, Kay Cichon, Nicole Schildt, Sandra Röder, Brigitte Hanganu-Opatz, Ileana L. |
author_sort | Bieler, Malte |
collection | PubMed |
description | Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing. |
format | Online Article Text |
id | pubmed-5362936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-53629362017-04-03 Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices Bieler, Malte Sieben, Kay Cichon, Nicole Schildt, Sandra Röder, Brigitte Hanganu-Opatz, Ileana L. eNeuro New Research Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing. Society for Neuroscience 2017-03-20 /pmc/articles/PMC5362936/ /pubmed/28374008 http://dx.doi.org/10.1523/ENEURO.0037-17.2017 Text en Copyright © 2017 Bieler et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Bieler, Malte Sieben, Kay Cichon, Nicole Schildt, Sandra Röder, Brigitte Hanganu-Opatz, Ileana L. Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title | Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title_full | Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title_fullStr | Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title_full_unstemmed | Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title_short | Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices |
title_sort | rate and temporal coding convey multisensory information in primary sensory cortices |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362936/ https://www.ncbi.nlm.nih.gov/pubmed/28374008 http://dx.doi.org/10.1523/ENEURO.0037-17.2017 |
work_keys_str_mv | AT bielermalte rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices AT siebenkay rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices AT cichonnicole rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices AT schildtsandra rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices AT roderbrigitte rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices AT hanganuopatzileanal rateandtemporalcodingconveymultisensoryinformationinprimarysensorycortices |