Cargando…

Biostatistics Series Module 8: Assessing Risk

In observational studies, as well as in interventional ones, it is frequently necessary to estimate risk that is the association between an observed outcome or event and exposure to one or more factors that may be contributing to the event. Understanding incidence and prevalence are the starting poi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hazra, Avijit, Gogtay, Nithya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363133/
https://www.ncbi.nlm.nih.gov/pubmed/28400629
http://dx.doi.org/10.4103/ijd.IJD_85_17
_version_ 1782517114156875776
author Hazra, Avijit
Gogtay, Nithya
author_facet Hazra, Avijit
Gogtay, Nithya
author_sort Hazra, Avijit
collection PubMed
description In observational studies, as well as in interventional ones, it is frequently necessary to estimate risk that is the association between an observed outcome or event and exposure to one or more factors that may be contributing to the event. Understanding incidence and prevalence are the starting point in any discussion of risk assessment. Incidence rate uses person-time as the denominator rather than a simple count. Ideally, rates and ratios estimated from samples should be presented with their corresponding 95% confidence intervals (CIs). To assess the importance of an individual risk factor, it is necessary to compare the risk of the outcome in the exposed group with that in the nonexposed group. A comparison between risks in different groups can be made by examining either their ratio or the difference between them. The 2 × 2 contingency table comes in handy in the calculation of ratios. Odds ratio (OR) is the ratio of the odds of an event in the exposed group, to the odds of the same event in the nonexposed group. It can range from zero to infinity. When the odds of an outcome in the two groups are identical, then the OR equals one. OR >1 indicates exposure increases risk while OR <1 indicates that exposure is protecting against risk. The OR should be presented with its 95% CI to enable more meaningful interpretation – if this interval includes 1, then even a relatively large OR will not carry much weight. The relative risk (RR) denotes the ratio of risk (probability) of event in exposed group to risk of same event in the nonexposed group. Its interpretation is similar (but not identical) to the OR. If the event in question is relatively uncommon, values of OR and RR tend to be similar. Absolute risk reduction (ARR) is a measure of the effectiveness of an intervention with respect to a dichotomous event. It is calculated as proportion experiencing the event in control group minus the proportion experiencing the event in treated group. It is often used to denote the benefit to the individual. The reciprocal of ARR is the number needed to treat (NNT), and it denotes the number of subjects who would need to be treated to obtain one more success than that obtained with a control treatment. Alternatively, this could also denote the number that would need to be treated to prevent one additional adverse outcome as compared to control treatment. Extended to toxicity, the NNT becomes a measure of harm and is then known as the number needed to harm (NNH). NNT and NNH are important concepts from the policy makers perspective and ideally should be calculated in all trials of therapeutic or prophylactic intervention.
format Online
Article
Text
id pubmed-5363133
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-53631332017-04-11 Biostatistics Series Module 8: Assessing Risk Hazra, Avijit Gogtay, Nithya Indian J Dermatol IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda In observational studies, as well as in interventional ones, it is frequently necessary to estimate risk that is the association between an observed outcome or event and exposure to one or more factors that may be contributing to the event. Understanding incidence and prevalence are the starting point in any discussion of risk assessment. Incidence rate uses person-time as the denominator rather than a simple count. Ideally, rates and ratios estimated from samples should be presented with their corresponding 95% confidence intervals (CIs). To assess the importance of an individual risk factor, it is necessary to compare the risk of the outcome in the exposed group with that in the nonexposed group. A comparison between risks in different groups can be made by examining either their ratio or the difference between them. The 2 × 2 contingency table comes in handy in the calculation of ratios. Odds ratio (OR) is the ratio of the odds of an event in the exposed group, to the odds of the same event in the nonexposed group. It can range from zero to infinity. When the odds of an outcome in the two groups are identical, then the OR equals one. OR >1 indicates exposure increases risk while OR <1 indicates that exposure is protecting against risk. The OR should be presented with its 95% CI to enable more meaningful interpretation – if this interval includes 1, then even a relatively large OR will not carry much weight. The relative risk (RR) denotes the ratio of risk (probability) of event in exposed group to risk of same event in the nonexposed group. Its interpretation is similar (but not identical) to the OR. If the event in question is relatively uncommon, values of OR and RR tend to be similar. Absolute risk reduction (ARR) is a measure of the effectiveness of an intervention with respect to a dichotomous event. It is calculated as proportion experiencing the event in control group minus the proportion experiencing the event in treated group. It is often used to denote the benefit to the individual. The reciprocal of ARR is the number needed to treat (NNT), and it denotes the number of subjects who would need to be treated to obtain one more success than that obtained with a control treatment. Alternatively, this could also denote the number that would need to be treated to prevent one additional adverse outcome as compared to control treatment. Extended to toxicity, the NNT becomes a measure of harm and is then known as the number needed to harm (NNH). NNT and NNH are important concepts from the policy makers perspective and ideally should be calculated in all trials of therapeutic or prophylactic intervention. Medknow Publications & Media Pvt Ltd 2017 /pmc/articles/PMC5363133/ /pubmed/28400629 http://dx.doi.org/10.4103/ijd.IJD_85_17 Text en Copyright: © 2017 Indian Journal of Dermatology http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda
Hazra, Avijit
Gogtay, Nithya
Biostatistics Series Module 8: Assessing Risk
title Biostatistics Series Module 8: Assessing Risk
title_full Biostatistics Series Module 8: Assessing Risk
title_fullStr Biostatistics Series Module 8: Assessing Risk
title_full_unstemmed Biostatistics Series Module 8: Assessing Risk
title_short Biostatistics Series Module 8: Assessing Risk
title_sort biostatistics series module 8: assessing risk
topic IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363133/
https://www.ncbi.nlm.nih.gov/pubmed/28400629
http://dx.doi.org/10.4103/ijd.IJD_85_17
work_keys_str_mv AT hazraavijit biostatisticsseriesmodule8assessingrisk
AT gogtaynithya biostatisticsseriesmodule8assessingrisk