Cargando…

The plastid genomes of nonphotosynthetic algae are not so small after all

The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very small and highly compact. This is not surprising: a heterotrophic existence means that genes for photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the plastomes...

Descripción completa

Detalles Bibliográficos
Autores principales: Figueroa-Martinez, Francisco, Nedelcu, Aurora M., Reyes-Prieto, Adrian, Smith, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363391/
https://www.ncbi.nlm.nih.gov/pubmed/28377793
http://dx.doi.org/10.1080/19420889.2017.1283080
Descripción
Sumario:The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very small and highly compact. This is not surprising: a heterotrophic existence means that genes for photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of compactness, why can't those of nonphotosynthetic species? Well, recently we showed that they can. The free-living, heterotrophic green alga Polytoma uvella has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most bloated plastome yet found in a heterotroph. In this addendum to the primary study, we elaborate on why the P. uvella plastome is so inflated, discussing the potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in nonphotosynthetic lineages.