Cargando…

Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines

BACKGROUND: Thymidylate synthase (TS), one of the key enzymes for thymidine synthesis, is a target of pemetrexed (PEM), a key agent for the systemic therapy of malignant pleural mesothelioma (MPM) and its overexpression has been correlated to PEM-resistance. In MPM, experimental data report activati...

Descripción completa

Detalles Bibliográficos
Autores principales: Monica, Valentina, Iacono, Marco Lo, Bracco, Enrico, Busso, Simone, Blasio, Laura Di, Primo, Luca, Peracino, Barbara, Papotti, Mauro, Scagliotti, Giorgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363531/
https://www.ncbi.nlm.nih.gov/pubmed/27391433
http://dx.doi.org/10.18632/oncotarget.10428
Descripción
Sumario:BACKGROUND: Thymidylate synthase (TS), one of the key enzymes for thymidine synthesis, is a target of pemetrexed (PEM), a key agent for the systemic therapy of malignant pleural mesothelioma (MPM) and its overexpression has been correlated to PEM-resistance. In MPM, experimental data report activation of the c-SRC tyrosine kinase suggesting it as a potential target to be further investigated. RESULTS: MPM cell lines showed different sensitivity, being MSTO the most and REN the least sensitive to PEM. REN cells showed high levels of both TS and SRC: dasatinib inhibited SRC activation and suppressed TS protein expression, starting from 100 nM dose, blocking the PEM-induced up regulation of TS protein levels. Dasatinib treatment impaired cells migration, and both sequential and co-administration with PEM significantly increased apoptosis. Dasatinib pretreatment improved sensitivity to PEM, downregulated TS promoter activity and, in association with PEM, modulated the downstream PI3K-Akt-mTOR signaling. CELL LINES AND METHODS: In three MPM cell lines (MPP89, REN and MSTO), the effects of c-SRC inhibition, in correlation with TS expression and PEM sensitivity, were evaluated. PEM and dasatinib, a SRC inhibitor, were administered as single agents, in combination or sequentially. Cell viability, apoptosis and migration, as well as TS expression and SRC activation have been assessed. CONCLUSIONS: These data indicate that dasatinib sensitizes mesothelioma cells to PEM through TS down-regulation.