Cargando…
An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification
Preoperatively predict the probability of Prostate cancer (PCa) biochemical recurrence (BCR) is of definite clinical relevance. The purpose of this study was to develop an imaging-based approach in the prediction of 3-years BCR through a novel support vector machine (SVM) classification. We collecte...
Autores principales: | Zhang, Yu-Dong, Wang, Jing, Wu, Chen-Jiang, Bao, Mei-Ling, Li, Hai, Wang, Xiao-Ning, Tao, Jun, Shi, Hai-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363650/ https://www.ncbi.nlm.nih.gov/pubmed/27542201 http://dx.doi.org/10.18632/oncotarget.11293 |
Ejemplares similares
-
Classification of Incidental Carcinoma of the Prostate Using Learning Vector Quantization and Support Vector Machines
por: Mattfeldt, Torsten, et al.
Publicado: (2004) -
Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine
por: Wang, Ke-Fan, et al.
Publicado: (2022) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
Using Support Vector Machine Ensembles for Target Audience Classification on Twitter
por: Lo, Siaw Ling, et al.
Publicado: (2015) -
Support Vector Machine Classification of Streptavidin-Binding Aptamers
por: Yu, Xinliang, et al.
Publicado: (2014)