Cargando…
Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization
BACKGROUND: Polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding ha...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363963/ https://www.ncbi.nlm.nih.gov/pubmed/28345062 http://dx.doi.org/10.1016/j.bbrep.2016.08.007 |
_version_ | 1782517243062517760 |
---|---|
author | Wall, Jonathan S. Williams, Angela Wooliver, Craig Martin, Emily B. Cheng, Xiaolin Heidel, R. Eric Kennel, Stephen J. |
author_facet | Wall, Jonathan S. Williams, Angela Wooliver, Craig Martin, Emily B. Cheng, Xiaolin Heidel, R. Eric Kennel, Stephen J. |
author_sort | Wall, Jonathan S. |
collection | PubMed |
description | BACKGROUND: Polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality. METHODS: Peptide-ligand interactions were studied using CD spectroscopy and solution-phase binding assays with radiolabeled p5 analogues. The interaction of a subset of peptides was further studied by using molecular dynamics simulations. RESULTS: Disruption of the peptide helical structure reduced peptide binding to heparin and human amyloid extracts. The all-D enantiomer and the β-sheet-structured peptide bound all substrates as well as, or better than, p5. The interaction of helical and β-sheet structured peptides with Aβ fibrils was modeled and shown to involve both ionic and non-ionic interactions. CONCLUSIONS: The α-helical secondary structure of peptide p5 is important for heparin and amyloid binding; however, helicity is not an absolute requirement as evidenced by the superior reactivity of a β-sheet peptide. The differential binding of the peptides with heparin and amyloid fibrils suggests that these molecular interactions are different. The all-D enantiomer of p5 and the β-sheet peptide are candidates for amyloid targeting reagents in vivo. General Significance Efficient binding of polybasic peptides with amyloid is dependent on the linearity of charge spacing in the context of an α-helical secondary structure. Peptides with an α-helix or β-sheet propensity and with similar alignment of basic residues is optimal. |
format | Online Article Text |
id | pubmed-5363963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-53639632017-09-27 Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization Wall, Jonathan S. Williams, Angela Wooliver, Craig Martin, Emily B. Cheng, Xiaolin Heidel, R. Eric Kennel, Stephen J. Biochem Biophys Rep Research Article BACKGROUND: Polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality. METHODS: Peptide-ligand interactions were studied using CD spectroscopy and solution-phase binding assays with radiolabeled p5 analogues. The interaction of a subset of peptides was further studied by using molecular dynamics simulations. RESULTS: Disruption of the peptide helical structure reduced peptide binding to heparin and human amyloid extracts. The all-D enantiomer and the β-sheet-structured peptide bound all substrates as well as, or better than, p5. The interaction of helical and β-sheet structured peptides with Aβ fibrils was modeled and shown to involve both ionic and non-ionic interactions. CONCLUSIONS: The α-helical secondary structure of peptide p5 is important for heparin and amyloid binding; however, helicity is not an absolute requirement as evidenced by the superior reactivity of a β-sheet peptide. The differential binding of the peptides with heparin and amyloid fibrils suggests that these molecular interactions are different. The all-D enantiomer of p5 and the β-sheet peptide are candidates for amyloid targeting reagents in vivo. General Significance Efficient binding of polybasic peptides with amyloid is dependent on the linearity of charge spacing in the context of an α-helical secondary structure. Peptides with an α-helix or β-sheet propensity and with similar alignment of basic residues is optimal. Elsevier 2016-08-11 /pmc/articles/PMC5363963/ /pubmed/28345062 http://dx.doi.org/10.1016/j.bbrep.2016.08.007 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Wall, Jonathan S. Williams, Angela Wooliver, Craig Martin, Emily B. Cheng, Xiaolin Heidel, R. Eric Kennel, Stephen J. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title | Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title_full | Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title_fullStr | Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title_full_unstemmed | Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title_short | Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization |
title_sort | secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - in vitro characterization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363963/ https://www.ncbi.nlm.nih.gov/pubmed/28345062 http://dx.doi.org/10.1016/j.bbrep.2016.08.007 |
work_keys_str_mv | AT walljonathans secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT williamsangela secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT woolivercraig secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT martinemilyb secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT chengxiaolin secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT heidelreric secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization AT kennelstephenj secondarystructurepropensityandchiralityoftheamyloidophilicpeptidep5anditsanaloguesimpactsligandbindinginvitrocharacterization |