Cargando…

Stability and dynamics of membrane-spanning DNA nanopores

Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability...

Descripción completa

Detalles Bibliográficos
Autores principales: Maingi, Vishal, Burns, Jonathan R., Uusitalo, Jaakko J., Howorka, Stefan, Marrink, Siewert J., Sansom, Mark S. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364398/
https://www.ncbi.nlm.nih.gov/pubmed/28317903
http://dx.doi.org/10.1038/ncomms14784
_version_ 1782517309760339968
author Maingi, Vishal
Burns, Jonathan R.
Uusitalo, Jaakko J.
Howorka, Stefan
Marrink, Siewert J.
Sansom, Mark S. P.
author_facet Maingi, Vishal
Burns, Jonathan R.
Uusitalo, Jaakko J.
Howorka, Stefan
Marrink, Siewert J.
Sansom, Mark S. P.
author_sort Maingi, Vishal
collection PubMed
description Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine.
format Online
Article
Text
id pubmed-5364398
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53643982017-04-11 Stability and dynamics of membrane-spanning DNA nanopores Maingi, Vishal Burns, Jonathan R. Uusitalo, Jaakko J. Howorka, Stefan Marrink, Siewert J. Sansom, Mark S. P. Nat Commun Article Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine. Nature Publishing Group 2017-03-20 /pmc/articles/PMC5364398/ /pubmed/28317903 http://dx.doi.org/10.1038/ncomms14784 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Maingi, Vishal
Burns, Jonathan R.
Uusitalo, Jaakko J.
Howorka, Stefan
Marrink, Siewert J.
Sansom, Mark S. P.
Stability and dynamics of membrane-spanning DNA nanopores
title Stability and dynamics of membrane-spanning DNA nanopores
title_full Stability and dynamics of membrane-spanning DNA nanopores
title_fullStr Stability and dynamics of membrane-spanning DNA nanopores
title_full_unstemmed Stability and dynamics of membrane-spanning DNA nanopores
title_short Stability and dynamics of membrane-spanning DNA nanopores
title_sort stability and dynamics of membrane-spanning dna nanopores
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364398/
https://www.ncbi.nlm.nih.gov/pubmed/28317903
http://dx.doi.org/10.1038/ncomms14784
work_keys_str_mv AT maingivishal stabilityanddynamicsofmembranespanningdnananopores
AT burnsjonathanr stabilityanddynamicsofmembranespanningdnananopores
AT uusitalojaakkoj stabilityanddynamicsofmembranespanningdnananopores
AT howorkastefan stabilityanddynamicsofmembranespanningdnananopores
AT marrinksiewertj stabilityanddynamicsofmembranespanningdnananopores
AT sansommarksp stabilityanddynamicsofmembranespanningdnananopores