Cargando…
Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
Many applications of carbon nanotubes require their chemical functionalization. Both covalent and supramolecular approaches have been extensively investigated. A less trodden path is the combination of both covalent and noncovalent chemistries, where the formation of covalent bonds triggers a partic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364655/ https://www.ncbi.nlm.nih.gov/pubmed/28451307 http://dx.doi.org/10.1039/c6sc03894h |
_version_ | 1782517367354425344 |
---|---|
author | Leret, Sofía Pouillon, Yann Casado, Santiago Navío, Cristina Rubio, Ángel Pérez, Emilio M. |
author_facet | Leret, Sofía Pouillon, Yann Casado, Santiago Navío, Cristina Rubio, Ángel Pérez, Emilio M. |
author_sort | Leret, Sofía |
collection | PubMed |
description | Many applications of carbon nanotubes require their chemical functionalization. Both covalent and supramolecular approaches have been extensively investigated. A less trodden path is the combination of both covalent and noncovalent chemistries, where the formation of covalent bonds triggers a particularly stable noncovalent interaction with the nanotubes. We describe a series of naphthalene diimide (NDI) bisalkene molecules that, upon mixing with single-walled carbon nanotubes (SWNTs) and Grubbs' catalyst, undergo two different reaction pathways. On one hand, they ring-close around the SWNTs to form rotaxane-like mechanically interlocked derivatives of SWNTs (MINTs). Alternatively, they oligomerize and then wrap around the SWNTs. The balance of MINTs to oligomer-wrapped SWNTs depends on the affinity of the NDI molecules for the SWNTs and the kinetics of the metathesis reactions, which can be controlled by varying the solvent. Thorough characterization of the products (TGA, TEM, AFM, Raman, UV-vis-NIR, PLE, XPS and UPS) confirms their structure and shows that each type of functionalization affects the electronic properties of the SWNTs differently. |
format | Online Article Text |
id | pubmed-5364655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-53646552017-04-27 Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation Leret, Sofía Pouillon, Yann Casado, Santiago Navío, Cristina Rubio, Ángel Pérez, Emilio M. Chem Sci Chemistry Many applications of carbon nanotubes require their chemical functionalization. Both covalent and supramolecular approaches have been extensively investigated. A less trodden path is the combination of both covalent and noncovalent chemistries, where the formation of covalent bonds triggers a particularly stable noncovalent interaction with the nanotubes. We describe a series of naphthalene diimide (NDI) bisalkene molecules that, upon mixing with single-walled carbon nanotubes (SWNTs) and Grubbs' catalyst, undergo two different reaction pathways. On one hand, they ring-close around the SWNTs to form rotaxane-like mechanically interlocked derivatives of SWNTs (MINTs). Alternatively, they oligomerize and then wrap around the SWNTs. The balance of MINTs to oligomer-wrapped SWNTs depends on the affinity of the NDI molecules for the SWNTs and the kinetics of the metathesis reactions, which can be controlled by varying the solvent. Thorough characterization of the products (TGA, TEM, AFM, Raman, UV-vis-NIR, PLE, XPS and UPS) confirms their structure and shows that each type of functionalization affects the electronic properties of the SWNTs differently. Royal Society of Chemistry 2017-03-01 2016-11-04 /pmc/articles/PMC5364655/ /pubmed/28451307 http://dx.doi.org/10.1039/c6sc03894h Text en This journal is © The Royal Society of Chemistry 2016 https://creativecommons.org/licenses/by-nc/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Leret, Sofía Pouillon, Yann Casado, Santiago Navío, Cristina Rubio, Ángel Pérez, Emilio M. Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation |
title | Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
|
title_full | Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
|
title_fullStr | Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
|
title_full_unstemmed | Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
|
title_short | Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation
|
title_sort | bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364655/ https://www.ncbi.nlm.nih.gov/pubmed/28451307 http://dx.doi.org/10.1039/c6sc03894h |
work_keys_str_mv | AT leretsofia bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation AT pouillonyann bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation AT casadosantiago bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation AT naviocristina bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation AT rubioangel bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation AT perezemiliom bimodalsupramolecularfunctionalizationofcarbonnanotubestriggeredbycovalentbondformation |