Cargando…
The development and biological characteristics of a novel potentially radioresistant inbred mouse strain
The growth of biomedical research over the previous decades has been accompanied by an increase in the number, complexity and diversity of experimental animals developed as research tools, and inbred mice are some of the most widely used. However, thus far, no inbred mice have exhibited strong radio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364868/ https://www.ncbi.nlm.nih.gov/pubmed/28035407 http://dx.doi.org/10.3892/mmr.2016.6066 |
_version_ | 1782517410209726464 |
---|---|
author | Wang, Qin Du, Liqing Wang, Yan Xu, Chang Sun, Zhijuan Fu, Yue Yang, Bing Wang, Yueying Mu, Chuanjie Fan, Saijun Cai, Lu Katsube, Takanori Liu, Qiang |
author_facet | Wang, Qin Du, Liqing Wang, Yan Xu, Chang Sun, Zhijuan Fu, Yue Yang, Bing Wang, Yueying Mu, Chuanjie Fan, Saijun Cai, Lu Katsube, Takanori Liu, Qiang |
author_sort | Wang, Qin |
collection | PubMed |
description | The growth of biomedical research over the previous decades has been accompanied by an increase in the number, complexity and diversity of experimental animals developed as research tools, and inbred mice are some of the most widely used. However, thus far, no inbred mice have exhibited strong radioresistance for use in radiation-damage research. To develop a radioresistant mouse model, a female Japanese outbreeding strain ICR/JCL mouse was mated with a male Chinese inbred strain 615 mouse. From the F1 generation, the mouse line was maintained by brother-to-sister mating. A novel mouse strain was established over >20 continuous generations and designated the Institute of Radiation Medicine-2 (IRM-2) mouse. The biological characteristics, genetic characteristics and susceptibility to radiation of these mice were determined. The IRM-2 mice inherited traits from the parents, including strong reproductive capacity, stable physiological and biochemical indices and few differences among individuals. According to the genetic results, the IRM-2 mice exhibited homozygosity, isogenicity and consistency, in agreement with international standards for inbred strains. Radiosensitivity studies have previously suggested that the lethal dose (LD)(50) values for IRM-2 mice were 7.17 Gy (male) and 7.5 Gy (female), resulting in a dose reduction factor value of 1.39 (male) and 1.37 (female). The mortality of IRM-2 mice irradiated with 8 Gy total body irradiation was 15% at day 9 and 90% at day 15 after radiation. The number of nucleated cells in bone marrow, DNA content and colony-forming unit-spleen counts in IRM-2 mice after exposure to γ-ray irradiation were markedly higher than the corresponding values for the parental strains, suggesting that the IRM-2 mice exhibit high resistance to ionizing radiation. Thus, it is suggested that this novel inbred mouse strain may be developed as an animal model of radioresistance for future use in radiation research. |
format | Online Article Text |
id | pubmed-5364868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-53648682017-05-15 The development and biological characteristics of a novel potentially radioresistant inbred mouse strain Wang, Qin Du, Liqing Wang, Yan Xu, Chang Sun, Zhijuan Fu, Yue Yang, Bing Wang, Yueying Mu, Chuanjie Fan, Saijun Cai, Lu Katsube, Takanori Liu, Qiang Mol Med Rep Articles The growth of biomedical research over the previous decades has been accompanied by an increase in the number, complexity and diversity of experimental animals developed as research tools, and inbred mice are some of the most widely used. However, thus far, no inbred mice have exhibited strong radioresistance for use in radiation-damage research. To develop a radioresistant mouse model, a female Japanese outbreeding strain ICR/JCL mouse was mated with a male Chinese inbred strain 615 mouse. From the F1 generation, the mouse line was maintained by brother-to-sister mating. A novel mouse strain was established over >20 continuous generations and designated the Institute of Radiation Medicine-2 (IRM-2) mouse. The biological characteristics, genetic characteristics and susceptibility to radiation of these mice were determined. The IRM-2 mice inherited traits from the parents, including strong reproductive capacity, stable physiological and biochemical indices and few differences among individuals. According to the genetic results, the IRM-2 mice exhibited homozygosity, isogenicity and consistency, in agreement with international standards for inbred strains. Radiosensitivity studies have previously suggested that the lethal dose (LD)(50) values for IRM-2 mice were 7.17 Gy (male) and 7.5 Gy (female), resulting in a dose reduction factor value of 1.39 (male) and 1.37 (female). The mortality of IRM-2 mice irradiated with 8 Gy total body irradiation was 15% at day 9 and 90% at day 15 after radiation. The number of nucleated cells in bone marrow, DNA content and colony-forming unit-spleen counts in IRM-2 mice after exposure to γ-ray irradiation were markedly higher than the corresponding values for the parental strains, suggesting that the IRM-2 mice exhibit high resistance to ionizing radiation. Thus, it is suggested that this novel inbred mouse strain may be developed as an animal model of radioresistance for future use in radiation research. D.A. Spandidos 2017-02 2016-12-22 /pmc/articles/PMC5364868/ /pubmed/28035407 http://dx.doi.org/10.3892/mmr.2016.6066 Text en Copyright: © Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Wang, Qin Du, Liqing Wang, Yan Xu, Chang Sun, Zhijuan Fu, Yue Yang, Bing Wang, Yueying Mu, Chuanjie Fan, Saijun Cai, Lu Katsube, Takanori Liu, Qiang The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title | The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title_full | The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title_fullStr | The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title_full_unstemmed | The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title_short | The development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
title_sort | development and biological characteristics of a novel potentially radioresistant inbred mouse strain |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364868/ https://www.ncbi.nlm.nih.gov/pubmed/28035407 http://dx.doi.org/10.3892/mmr.2016.6066 |
work_keys_str_mv | AT wangqin thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT duliqing thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT wangyan thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT xuchang thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT sunzhijuan thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT fuyue thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT yangbing thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT wangyueying thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT muchuanjie thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT fansaijun thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT cailu thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT katsubetakanori thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT liuqiang thedevelopmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT wangqin developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT duliqing developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT wangyan developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT xuchang developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT sunzhijuan developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT fuyue developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT yangbing developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT wangyueying developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT muchuanjie developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT fansaijun developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT cailu developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT katsubetakanori developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain AT liuqiang developmentandbiologicalcharacteristicsofanovelpotentiallyradioresistantinbredmousestrain |