Cargando…

Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro

The adipokine nicotinamide phosphoribosyltransferase (Nampt), also known as pre-B-cell colony-enhancing factor or the insulin-mimetic hormone visfatin, has a crucial role in the conversion of nicotinamide to nicotinamide mononucleotide during biosynthesis of the coenzyme nicotinamide adenine dinucle...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Jong Min, Ahn, Sung-Jun, Cheon, Yoon-Hee, Lee, Myeung Su, Oh, Jaemin, Kim, Ju-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364879/
https://www.ncbi.nlm.nih.gov/pubmed/28035412
http://dx.doi.org/10.3892/mmr.2016.6069
_version_ 1782517412693803008
author Baek, Jong Min
Ahn, Sung-Jun
Cheon, Yoon-Hee
Lee, Myeung Su
Oh, Jaemin
Kim, Ju-Young
author_facet Baek, Jong Min
Ahn, Sung-Jun
Cheon, Yoon-Hee
Lee, Myeung Su
Oh, Jaemin
Kim, Ju-Young
author_sort Baek, Jong Min
collection PubMed
description The adipokine nicotinamide phosphoribosyltransferase (Nampt), also known as pre-B-cell colony-enhancing factor or the insulin-mimetic hormone visfatin, has a crucial role in the conversion of nicotinamide to nicotinamide mononucleotide during biosynthesis of the coenzyme nicotinamide adenine dinucleotide. Previous reports have demonstrated the inhibitory effects of Nampt on osteoclast formation from human peripheral blood mononuclear cells and CD14+ monocytes. However, the effects of Nampt on bone marrow macrophage (BMM)-derived osteoclastogenesis and its precise role in the process remain unclear. The present in vitro study used recombinant Nampt and BMMs as osteoclast precursors demonstrated that Nampt suppresses receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by decreasing the phosphorylation of various early signal transducers, including c-Jun N-terminal kinase, Akt, glycogen synthase kinase-3 β, Bruton's tyrosine kinase and phospholipase C γ-2. In addition, western blotting and reverse transcription-quantitative polymerase chain reaction analysis indicated that Nampt downregulates the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1, leading to a decrease in the expression of osteoclast-specific genes including tartrate-resistant acid phosphatase, osteoclast-associated receptor and cathepsin K. However, the bone-resorbing activity of mature osteoclasts treated with Nampt was similar to untreated control osteoclasts. This finding indicates that Nampt exerts its anti-osteoclastogenic activity by targeting osteoclast precursor cells rather than mature osteoclasts. Consequently, the present study demonstrated that Nampt acts as a negative regulator of RANKL-mediated differentiation of BMMs into osteoclasts, suggesting the potential therapeutic targets to treat bone-related disorders such as osteoporosis.
format Online
Article
Text
id pubmed-5364879
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-53648792017-05-15 Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro Baek, Jong Min Ahn, Sung-Jun Cheon, Yoon-Hee Lee, Myeung Su Oh, Jaemin Kim, Ju-Young Mol Med Rep Articles The adipokine nicotinamide phosphoribosyltransferase (Nampt), also known as pre-B-cell colony-enhancing factor or the insulin-mimetic hormone visfatin, has a crucial role in the conversion of nicotinamide to nicotinamide mononucleotide during biosynthesis of the coenzyme nicotinamide adenine dinucleotide. Previous reports have demonstrated the inhibitory effects of Nampt on osteoclast formation from human peripheral blood mononuclear cells and CD14+ monocytes. However, the effects of Nampt on bone marrow macrophage (BMM)-derived osteoclastogenesis and its precise role in the process remain unclear. The present in vitro study used recombinant Nampt and BMMs as osteoclast precursors demonstrated that Nampt suppresses receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by decreasing the phosphorylation of various early signal transducers, including c-Jun N-terminal kinase, Akt, glycogen synthase kinase-3 β, Bruton's tyrosine kinase and phospholipase C γ-2. In addition, western blotting and reverse transcription-quantitative polymerase chain reaction analysis indicated that Nampt downregulates the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1, leading to a decrease in the expression of osteoclast-specific genes including tartrate-resistant acid phosphatase, osteoclast-associated receptor and cathepsin K. However, the bone-resorbing activity of mature osteoclasts treated with Nampt was similar to untreated control osteoclasts. This finding indicates that Nampt exerts its anti-osteoclastogenic activity by targeting osteoclast precursor cells rather than mature osteoclasts. Consequently, the present study demonstrated that Nampt acts as a negative regulator of RANKL-mediated differentiation of BMMs into osteoclasts, suggesting the potential therapeutic targets to treat bone-related disorders such as osteoporosis. D.A. Spandidos 2017-02 2016-12-23 /pmc/articles/PMC5364879/ /pubmed/28035412 http://dx.doi.org/10.3892/mmr.2016.6069 Text en Copyright: © Baek et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Baek, Jong Min
Ahn, Sung-Jun
Cheon, Yoon-Hee
Lee, Myeung Su
Oh, Jaemin
Kim, Ju-Young
Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title_full Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title_fullStr Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title_full_unstemmed Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title_short Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro
title_sort nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κb ligand-induced osteoclast differentiation in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364879/
https://www.ncbi.nlm.nih.gov/pubmed/28035412
http://dx.doi.org/10.3892/mmr.2016.6069
work_keys_str_mv AT baekjongmin nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro
AT ahnsungjun nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro
AT cheonyoonhee nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro
AT leemyeungsu nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro
AT ohjaemin nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro
AT kimjuyoung nicotinamidephosphoribosyltransferaseinhibitsreceptoractivatorofnuclearfactorkbligandinducedosteoclastdifferentiationinvitro