Cargando…
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous i...
Autores principales: | Ingo, Carson, Magin, Richard L., Parrish, Todd B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365032/ https://www.ncbi.nlm.nih.gov/pubmed/28344436 http://dx.doi.org/10.3390/e16115838 |
Ejemplares similares
-
Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue
por: Ingo, Carson, et al.
Publicado: (2015) -
Computation of solution to fractional order partial reaction diffusion equations
por: Gul, Haji, et al.
Publicado: (2020) -
A Review of Fractional Order Entropies
por: Lopes, António M., et al.
Publicado: (2020) -
Fractional-order equations and inclusions
por: Fečkan, Michal, et al.
Publicado: (2017) -
Analytical Solutions of Fractional-Order Diffusion Equations by Natural Transform Decomposition Method
por: Shah, Rasool, et al.
Publicado: (2019)