Cargando…
A tight tuneable range for Ni(II)-sensing and -buffering in cells
The metal-affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II)-sensor InrS then created cyanobacteria (Synechocystis PCC 6803) i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365139/ https://www.ncbi.nlm.nih.gov/pubmed/28166209 http://dx.doi.org/10.1038/nchembio.2310 |
Sumario: | The metal-affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II)-sensor InrS then created cyanobacteria (Synechocystis PCC 6803) in which transcription of genes encoding a Ni(II)-exporter and a Ni(II)-importer were controlled by InrS variants with weaker Ni(II)-affinities. Variant strains were sensitive to elevated nickel and contained more nickel but the increase was small compared to the change in Ni(II)-affinity. All of the variant-sensors retained the allosteric mechanism which inhibits DNA binding upon metal binding but a response to nickel in vivo was only observed when the sensitivity was set to respond within a relatively narrow (less than 2 orders of magnitude) range of nickel-concentrations. The Ni(II)-affinity of InrS is attuned to cellular metal concentrations rather than the converse. |
---|