Cargando…

Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy

Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Manninen, Otto, Puolakkainen, Tero, Lehto, Jemina, Harittu, Elina, Kallonen, Aki, Peura, Marko, Laitala-Leinonen, Tiina, Kopra, Outi, Kiviranta, Riku, Lehesjoki, Anna-Elina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365244/
https://www.ncbi.nlm.nih.gov/pubmed/28377970
http://dx.doi.org/10.1016/j.bonr.2015.10.002
_version_ 1782517481100804096
author Manninen, Otto
Puolakkainen, Tero
Lehto, Jemina
Harittu, Elina
Kallonen, Aki
Peura, Marko
Laitala-Leinonen, Tiina
Kopra, Outi
Kiviranta, Riku
Lehesjoki, Anna-Elina
author_facet Manninen, Otto
Puolakkainen, Tero
Lehto, Jemina
Harittu, Elina
Kallonen, Aki
Peura, Marko
Laitala-Leinonen, Tiina
Kopra, Outi
Kiviranta, Riku
Lehesjoki, Anna-Elina
author_sort Manninen, Otto
collection PubMed
description Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb(−/−)) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb(−/−) mice. Histology from Cstb(−/−) mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb(−/−) group. Cstb(−/−) osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb(−/−) mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.
format Online
Article
Text
id pubmed-5365244
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-53652442017-04-04 Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy Manninen, Otto Puolakkainen, Tero Lehto, Jemina Harittu, Elina Kallonen, Aki Peura, Marko Laitala-Leinonen, Tiina Kopra, Outi Kiviranta, Riku Lehesjoki, Anna-Elina Bone Rep Article Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb(−/−)) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb(−/−) mice. Histology from Cstb(−/−) mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb(−/−) group. Cstb(−/−) osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb(−/−) mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation. Elsevier 2015-11-06 /pmc/articles/PMC5365244/ /pubmed/28377970 http://dx.doi.org/10.1016/j.bonr.2015.10.002 Text en © 2015 Merck and company http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Manninen, Otto
Puolakkainen, Tero
Lehto, Jemina
Harittu, Elina
Kallonen, Aki
Peura, Marko
Laitala-Leinonen, Tiina
Kopra, Outi
Kiviranta, Riku
Lehesjoki, Anna-Elina
Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title_full Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title_fullStr Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title_full_unstemmed Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title_short Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
title_sort impaired osteoclast homeostasis in the cystatin b-deficient mouse model of progressive myoclonus epilepsy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365244/
https://www.ncbi.nlm.nih.gov/pubmed/28377970
http://dx.doi.org/10.1016/j.bonr.2015.10.002
work_keys_str_mv AT manninenotto impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT puolakkainentero impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT lehtojemina impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT harittuelina impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT kallonenaki impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT peuramarko impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT laitalaleinonentiina impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT kopraouti impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT kivirantariku impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy
AT lehesjokiannaelina impairedosteoclasthomeostasisinthecystatinbdeficientmousemodelofprogressivemyoclonusepilepsy